From reason.com Stars in Her Eyes Astronomer Sallie Baliunas on sunspots, global warming, and the benefits of privately funded science An astronomer at the Harvard-Smithsonian Center for Astrophysics in Massachusetts, Baliunas is also the deputy director of the Mount Wilson Institute in the San Gabriel Mountains north of Pasadena, California. She spends about a week a month on the West Coast, using Mount Wilson's historic 100-inch telescope to study "sun-like stars." Baliunas came to the observatory as a graduate student in 1977.
.......
Sallie Baliunas: I'm interested in why the sun has a regular cycle of magnetism. There's a clock, so to speak. Sunspots come and go every 11 years, and the sun's energy output changes in step with those changes in magnetism. The sun also changes on longer time scales. That has an influence on the earth's environment. So the question is, Why does the sun do that? There is no good basic theory that says why the sun would have a magnetic clock.
Reason: So you look at other stars to try to figure out what's going on with the sun?
Baliunas: Right. Here's an analogy. You're an extraterrestrial and you come to Earth, and you have 24 hours and you want to study the life cycle of a human. You can do one of two things. You can sit and follow one human for 24 hours and watch tiny microscopic changes in that human, or you can gather together a whole town and take information and look at the commonality. You can say, here's an infant and he needs to be taken care of, and here's a kid, and here's a young adult, and put together a picture of the human life span that way. I look at what I call "sun-like stars" at different phases of long-term evolution. It's a great deal quicker than waiting around for the sun to do something.
Reason: Have you gotten any interesting results?
Baliunas: It depends what time scale one is talking about. The sun brightens and fades over the sunspot cycle, the 11-year cycle. But also the intensity of the 11-year cycles has been building over the centuries.
Reason: What do you mean by "intensity"?
Baliunas: Looking back several hundred years, the sun's magnetism is at an all-time high. The last four peaks have been quite high.
Reason: Do these fluctuations produce a big effect?
Baliunas: It's relatively small from cycle to cycle, but we estimate that from the 17th century to now it could have been four or five tenths of a percent of the sun's energy output. Run that through a climate model, and that's enough to explain the temperature change.
Reason: Using the current models...
Baliunas: Using the current models...
Reason: Which you're not sure are right anyway...
Baliunas: Nobody's sure--all models have similar problems.
We're saying [with] a few tenths percent change, which we don't think is unreasonable for the sun, you can explain everything. Now that's not the only mechanism. That's the first one, which one might think of as brightness change. There's some new work coming out of Europe on clouds. The amount of cloud coverage on the earth is changing by a few percent every 11 years --it's anti-phased with the cycle. The latest idea is that it's the sun modulating the cosmic rays that are coming in making nuclei of clouds.
So after looking at all these vast unknowns, I then saw the key problem for the greenhouse extremists. We always read about how the temperature has warmed about a degree Fahrenheit--a half degree centigrade--in the last 100 years. But if you look at the temperature records, it's quite clear: All the warming occurs early in the century. But most of the greenhouse gases are put in the atmosphere after World War II, in the last 50 years. So they can't cause most of the warming of the last 100 years. Something else had to. The sun's changes fit that very well. That just may be a coincidence, but that's what we're pursuing.
Reason: What has the sun's effect since 1940 been?
Baliunas: That's a harder question because we consider changes of the sun on time scales of several decades or more. So asking me what has gone on since 1940 is almost at the limit of what I'm looking at. If you want to look back over the last 100, 200, or 300 years, it's a little easier for me to talk about it.
Reason: Would this solar variability research say anything about what would happen if we were really to increase greenhouse gases in the atmosphere a lot?
Baliunas: That experiment has been done. We've increased the amount of greenhouse gases by an equivalent of going halfway to a doubling of carbon dioxide--and doubling is the benchmark that everyone talks about. And then you look at how the earth's temperature has responded, and it has not warmed more than a tenth or two-tenths of a degree. So a simple back-of-the-envelope calculation says a doubling is a few tenths of a degree. That's not significant, because it's not noticeable above the natural background changes.
The real test of this is the last 20 years, with very precise satellite measures of the earth's temperature made globally. The global average temperature of the atmosphere, just above the surface of the earth, has not warmed at all. There's been no warming trend in the past 20 years, and the models all say that there should have been a warming of several tenths of a degree centigrade in that time. Reason: And the atmosphere has warmed at certain levels.
Baliunas: No. There's been no warming in the satellite data. There's been a cooling in the lower stratosphere, and no warming in the lower troposphere. And at the surface, I should mention that the continental U.S. has very good measurements over the last 100 years and there's been no net warming there either.
Reason: How does this fit in with your solar explanations?
Baliunas: We're trying to subtract the sun's influence [from climate fluctuations caused by other sources]. The sun is particularly good at explaining this early 20th-century warming, which can't have been caused by the greenhouse gases. If we had a good prediction for what the sun would do next, given the past calibrations that we've done, we then could make a prediction. But we're not at the point where we can predict what the sun will do 50 years from now.
Reason: There was an International Panel on Climate Change, whose results have been widely disseminated. What do you think about the IPCC report?
Baliunas: The IPCC report actually is very careful to say that the models have not been validated. That tells you that you can't make a prediction with them. The executive summary says that there's a discernible human influence, but the information in the chapter on which that conclusion was based has been overturned by the scientific process. The report is obsolete.
Reason: What overturned it?
Baliunas: The executive summary's conclusion was based on the results of new climate simulations that made predictions both in three dimensions and time. That's the way to go: Global warming won't be uniform over the globe--certain areas or different levels of the atmosphere will warm more than others. So you look at the regions that are supposed to warm first--for example, the Arctic or, in the case of that report, a region of the lower atmosphere over the southern hemisphere oceans. And in the report, it was claimed that there was good agreement between the theory and the observations. But when that underlying paper was published, it was very quickly overturned by a longer stretch of data.
Reason: By whom?
Baliunas: One paper is by Pat Michaels and Chip Knappenberger. That was published in Nature.
There had been a short uptick in the temperature of that region, but when looking at a longer temperature record that was both earlier and later, it was seen that that uptick was just part of a long-term null trend. So the models had predicted wrongly. There had been no increase in that area.
I have only cut small sections of the interview.
tom watson tosiwmee |