Wow, that looks and sounds like a Doctor Who creature--
Lion’s manes will take just about anything, from the tiniest zooplankton—little critters and fish larvae and such that drift in the open ocean—to smaller jelly species and even their own kind. Their mighty weapons are stinging cells known as nematocysts, which on contact fire poisonous barbs into the prey (think Scorpion from Mortal Kombat, only nematocysts didn’t used to get me in trouble for spending so much money in arcades).
Though nowhere near as powerful of the notoriously deadly box jellyfish, the sting of the lion’s mane is more than enough to incapacitate small critters—and dish out searing pain to humans. (Gershwin herself once had a lion’s mane sting her foot, which “went all red and puffy” and felt like it was being stabbed with “thousands of needles.”) Thoroughly ensnared by the tentacle’s innumerable spines and none too healthy on account of the poison, the prey is reeled in. The lion’s mane can do this a single tentacle at a time, contracting the muscles in each until the prey reaches its curtain-like “oral arms,” folds of tissue in its bell.
The photographer likely suffered greatly to take this picture, but rest easy knowing that we paid for the rights to republish it, so at least he’s getting compensated for his efforts. Photo: Cultura Science/Alexander Semenov/Getty Images
From here the prey passes into the jelly’s mouth, which is really just a hole in its body that also functions as its anus, and finally moves into the stomach. “And then they have a circulatory system of canals where the nutrients from the stomach are just dispersed out to the rest of the body through this network,” said Gershwin. “It’s really, really simple, but it works really well. I mean, they’ve been doing exactly that for 600 million years, and it works so well they haven’t needed to change it.”
That’s quite an evolutionary sweet spot. Such a sweet spot, in fact, that the lion’s mane never bothered to evolve true eyes. Instead, these jellies have extremely rudimentary eyespots and can do nothing more than detect light and dark—no shapes and certainly no colors (interestingly, box jellyfish have eyes more like our own, complete with lenses and such, presumably so they can observe the terror they strike in humans). And a brain? Not really necessary, as it turns out. They do have nerve bundles that essentially automate all of their processes, but these are nothing like a brain as we would recognize it.
“A brain is kinda overrated, really,” said Gershwin. “We find it kind of entertaining, and a little bit important, but they do all the stuff they need to do without a brain. But so do venus fly traps. Lots of things can actually do kind of sophisticated behaviors without a brain.”
Reproduction for the lion’s mane, though, is quite sophisticated. Males release sperm threads into the water, and females hoover them up with their mouth-anus thing, a totally unscientific term that I just made up. Her eggs are fertilized internally, and when they hatch, the larvae roam around a bit inside her, then drift off to settle on the seafloor.
But these larvae don’t turn right into what we would identify as jellies, in what is known as the medusa stage, named after the mythical lady with snakes for hair. Instead, they become little white tubes with frilly ends called polyps, which wait until conditions are just right to actually clone themselves hundreds of times over, releasing baby jellies into the water column. Though scientists have yet to do genetic testing on this, Gershwin suspects that huge blooms of lion’s mane jellies could in fact all be clones from a single tiny polyp. It’s a bit like Attack of the Clones, only interesting.
Who would have thought of that method of reproduction?! An absurd creature indeed. |