re: Mother Earth Mother Board: A Submarine Cable Laying Odyssey
Jay, the mean time between failures and the mean time to repair metrics (MTBF/MTTR) of submarine cables are very ambitious. Perhaps more so than what their actual life expectancies will prove to be at some point, as obsolescing goes, today.
But they need to be aggressive due to the severe consequences that would ensue should failures arise, regardless of when they cease to be economically viable. They are measured in terms of years, and I'm not exactly sure what the precise numbers are for the newest cables, but they are near-surrealistic by normal standards for overland systems.
The SDL article to which you are replying, upstream, spells out some of those numbers.
Many of the questions you or anyone else might have concerning the laying of deep ocean cables can be found in an excellent primer which was written in 1996 in anticipation of the laying of FLAG, or Fiber Link Around the Globe, in Wired Magazine. It's an epoch, so make sure you have the time to read it in one sitting, since you may not be able to put it down, if this sort of thing spins your prop. It's titled:
"Mother Earth Mother Board" and was written by Neal Stephenson. It starts with:
"The hacker tourist ventures forth across the wide and wondrous meatspace of three continents, chronicling the laying of the longest wire on Earth...", which can be found at:
wired.com
Some specific answers to the questions you posed upstream are on page 6 of this article, at:
wired.com
Page 6 appears below. Again, keep in mind the time of the writing, 1996:
------snip begins:
So the bad news is that the capacity of modern undersea cables like FLAG isn't very impressive by Internet standards, but the slightly better news is that such cables are much better than what we have now. Here's how they work: Signals are transmitted down the fiber as modulated laser light with a wavelength of 1,558 nanometers (nm), which is in the infrared range. These signals begin to fade after they have traveled a certain distance, so it's necessary to build amplifiers into the cable every so often. In the case of FLAG, the spacing of these amplifiers ranges from 45 to 85 kilometers. They work on a strikingly simple and elegant principle. Each amplifier contains an approximately 10-meter-long piece of special fiber that has been doped with erbium ions, making it capable of functioning as a laser medium. A separate semiconductor laser built into the amplifier generates powerful light at 1,480 nm - close to the same frequency as the signal beam, but not close enough to interfere with it. This light, directed into the doped fiber, pumps the electrons orbiting around those erbium ions up to a higher energy level.
The signal coming down the FLAG cable passes through the doped fiber and causes it to lase, i.e., the excited electrons drop back down to a lower energy level, emitting light that is coherent with the incoming signal - which is to say that it is an exact copy of the incoming signal, except more powerful.
The amplifiers need power - up to 10,000 volts DC, at 0.9 amperes. Since public 10,000-volt outlets are few and far between on the bottom of the ocean, this power must be delivered down the same cable that carries the fibers. The cable, therefore, consists of an inner core of four optical fibers, coated with plastic jackets of different colors so that the people at opposite ends can tell which is which, plus a thin copper wire that is used for test purposes. The total thickness of these elements taken together is comparable to a pencil lead; they are contained within a transparent plastic tube. Surrounding this tube is a sheath consisting of three steel segments designed so that they interlock and form a circular jacket. Around that is a layer of about 20 steel "strength wires" - each perhaps 2 mm in diameter - that wrap around the core in a steep helix. Around the strength wires goes a copper tube that serves as the conductor for the 10,000-volt power feed. Only one conductor is needed because the ocean serves as the ground wire. This tube also is watertight and so performs the additional function of protecting the cable's innards. It then is surrounded by polyethylene insulation to a total thickness of about an inch. To protect it from the rigors of shipment and laying, the entire cable is clothed in good old-fashioned tarred jute, although jute nowadays is made from plastic, not hemp.
This suffices for the deep-sea portions of the cable. In shallower waters, additional layers of protection are laid on, beginning with a steel antishark jacket. As the shore is approached, various other layers of steel armoring wires are added.
This more or less describes how all submarine cables are being made as of 1996. Only a few companies in the world know how to make cables like this: AT&T Submarine Systems International (AT&T-SSI) in the US, Alcatel in France, and KDD Submarine Cable Systems (KDD-SCS) in Japan, among others. AT&T-SSI and KDD-SCS frequently work together on large projects and are responsible for FLAG. Alcatel, in classic French fasion, likes to go it alone.
This basic technology will, by the end of the century, be carrying most of the information between continents. Copper-based coaxial cable systems are still in operation in many places around the world, but all of them will have reached the end of their practical lifetimes within a few years. Even if they still function, they are not worth the trouble it takes to operate them. TPC-1 (Trans Pacific Cable #1), which connected Japan to Guam and hence to the United States in 1964, is still in perfect working order, but so commercially worthless that it has been turned over to a team at Tokyo University, which is using it to carry out seismic research. The capacity of such cables is so tiny that modern fiber cables could absorb all of their traffic with barely a hiccup if the right switches and routers were in place. Likewise, satellites have failed to match some of the latest leaps in fiber capacity and can no longer compete with submarine cables, at least until such time as low-flying constellations such as Iridium and Teledesic begin operating.
---------end snip
Iridium (and Teledesic), indeed. Like I stated above, keep in mind the date of this writing: 1996.
Best Regards, Frank Coluccio
|