SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Biotech / Medical : XOMA. Bull or Bear?
XOMA 24.99+1.5%Jan 29 3:59 PM EST

 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext  
To: aknahow who wrote (12444)12/14/1999 10:14:00 PM
From: Bluegreen  Read Replies (2) of 17367
 
UNBELIEVABLE!!!!!! JUST UNBELIEVABLE!!!!!!!
>>>>>>>>>>>>Protein Sci 1999 Nov;8(11):2392-8
Immunochemical evidence that cholesteryl ester transfer protein and bactericidal/permeability-increasing protein share a similar tertiary structure.
Guyard-Dangremont V, Tenekjian V, Chauhan V, Walter S, Roy P, Rassart E, Milne AR
Department of Pathology and Biochemistry, University of Ottawa Heart Institute, Ontario, Canada.
Cholesteryl ester transfer protein (CETP) plays an important role in plasma lipoprotein metabolism through its ability to transfer cholesteryl ester, triglyceride, and phospholipid between lipoproteins. CETP is a member of a gene family that also includes bactericidal/permeability-increasing protein (BPI). The crystal structure of BPI shows it to be composed of two domains that share a similar structural fold that includes an apolar ligand-binding pocket. As structurally important residues are conserved between BPI and CETP, it is thought that CETP and BPI may have a similar overall conformation. We have previously proposed a model of CETP structure based on the binding characteristics of anti-CETP monoclonal antibodies (mAbs). We now present a refined epitope map of CETP that has been adapted to a structural model of CETP that uses the atomic coordinates of BPI. Four epitopes composed of CETP residues 215-219, 219-223, 223-227, and 444-450, respectively, are predicted to be situated on the external surface of the central beta-sheet and a fifth epitope (residues 225-258) on an extended linker that connects the two domains of the molecule. Three other epitopes, residues 317-331, 360-366, and 393-410, would form part of the putative carboxy-terminal beta-barrel. The ability of the corresponding mAbs to compete for binding to CETP is consistent with the proximity of the respective epitopes in the model. These results thus provide experimental evidence that is consistent with CETP and BPI having similar surface topologies.<<<<<<<<<<<
Report TOU ViolationShare This Post
 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext