SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Technology Stocks : Frank Coluccio Technology Forum - ASAP

 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext  
To: ftth who wrote ()4/13/2000 8:31:00 PM
From: ftth  Read Replies (1) of 1782
 
But wait.....there's more:
Point-to-multipoint wide area telecommunications network via atmospheric laser transmission through a remote optical router ; US Patent 5786923

Inventor(s): Doucet; Mark A. , College Station, TX
Panak; David L. , College Station, TX

Applicant(s): Dominion Communications, LLC, Bryan, TX

Issued/Filed Dates: July 28, 1998 / March 29, 1996


Application Number: US1996000625725

Abstract: A point-to-multipoint bi-directional wide area telecommunications network employing atmospheric optical communication. The network comprises a primary transceiver unit, a plurality of subscriber transceiver units and an optical router. The primary transceiver unit generates a first light beam on which it modulates first data. The primary transceiver unit atmospherically transmits the first light beam to the optical router which demodulates the first data, modulates the first data on a second light beam and transmits the second light beam to the plurality of subscriber transceiver units in multiplexed manner. The subscriber transceiver units receive the second light beam and demodulate the first data from the second light beam. Conversely, the subscriber transceiver units atmospherically transmit a third light beam on which they modulate second data to the optical router which demodulates the second data, modulates the second data on a fourth light beam and transmits the fourth light beam to the primary transceiver unit. The primary transceiver unit atmospherically receives the fourth light beam and demodulates the respective second data from the fourth light beam. The optical router of the network comprises a secondary transceiver unit, a plurality of transceiver modules and an electronic router for routing data between the secondary transceiver unit and the plurality of transceiver modules to establish communication channels between the primary transceiver unit and the plurality of subscriber transceiver units. The secondary transceiver unit communicates with the primary transceiver unit and the transceiver modules communicate with the subscriber transceiver units. The transceiver modules comprise an X-Y beam deflector for deflecting the second and third light beams to a portion of the subscriber transceiver units in a time-multiplexed fashion. In an alternate embodiment of the optical router, the first light beam is redirected to the subscriber transceiver units and the third light beam is redirected to the primary transceiver unit by a mirror and lens set assembly rather than being demodulated and modulated in the router. Applications such as telephony, the Internet, teleconferencing, radio broadcast, HDTV, interactive TV, and other television forms are contemplated for employment on the network.

Report TOU ViolationShare This Post
 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext