SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Technology Stocks : SDL, Inc. [Nasdaq: SDLI]

 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext  
To: Wyätt Gwyön who wrote (2088)7/9/2000 9:45:31 AM
From: pat mudge  Read Replies (1) of 3951
 
While waiting for center court action. . .

icd.pennwellnet.com

Indium phosphide (InP) is likely to become instrumental in the making of ICs for optical as well as electrical components used in very-high-speed fiber-optic networks, says Khan. "Because its mobility is even higher than that of gallium arsenide (GaAs), InP is a natural material to make very-high-speed electronic IC components that are part of the fiber-optic transceivers," she explains. . . .


"I think the most efficient form of amplification is going to be distributed Raman amplifier erbium-doped fiber amplifier [EDFA] combinations [for high-capacity networks]," says George Wildeman, product-line manager for amplifiers at Corning Inc. (Corning, NY). The Raman amplifier is the preamplifier and the EDFA is the booster amplifier. "If you don't have Raman amplification in 40-Gbit/sec systems-even if you're not trying to do long reach-you could only space these repeater huts about every 40 km, which would not be economical. If you want to keep the standard 80- to 100-km hut spacings, then the distributed Raman EDFA amplification allows you to achieve that span distance. It's providing reduced noise, but it's also extending the span length. . . . "
Report TOU ViolationShare This Post
 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext