GLW 'Creative Tension':
Fast Company
Its permanent web address is : fastcompany.com )
Creative Tension Corning Inc.'s Sullivan Park research facility is one of the most creative places in the world -- a place where brilliant ( and unruly ) scientists literally invent the future.
by Charles Fishman photographs by Chris Buck from FC issue , page 359 (C) past
-------------------------------------------------------------------------------- The hair is hard to overlook. It's short, stylish, and artfully done, but distinctly purple. Except among skateboarders and in dance clubs, purple hair is pretty uncommon. In a respectable corporate setting where people spend time talking about benchmarks, annual-performance objectives, and 360-degree feedback, purple hair is truly scarce. When you cross that corporate setting with an advanced scientific-research institution -- where people wear lab coats, talk about quantum dots, and browse chemical catalogs looking for interesting molecules -- people with purple hair are as hard to find as neutrinos. Throw in the fact that Lina Echeverr?a, 50, is guardian of one of the great scientific traditions of America -- she is director of glass and glass ceramics at the storied glass-research lab at Corning Inc. -- and the purple hair is truly striking. How does a woman who is a scientist, a colleague, and a pivotal corporate manager maintain credibility with purple hair -- no matter how stylishly it's done?
"Usually it's more eggplant," says Echeverr?a. "Aubergine. A.J., my hairdresser, I give him all the freedom. It's fun, no?"
Echeverr?a is an unlikely occupant of her office -- an energetic, elfin, Colombian woman who started her career tramping through the jungles of South America studying ancient lavas. And she brings an unlikely management style to Corning, a company ( 1999 revenues: $4.7 billion ) whose history spans three centuries and whose early customers included Thomas Edison. Echeverr?a heads an unruly group of 45 researchers -- 25 PhD scientists and another 20 technicians and support personnel -- who make up the glass and glass-ceramics research group. The group works to understand existing glass, invent new kinds of glass, and improve the performance of pulled glass -- Corning's modern signature product, optical fiber. To say that Echeverr?a is those people's boss, which is how the company would explain it, is laughable.
One of her group's top scientists, Nick Borrelli, 63, is also one of Corning's most senior researchers. "I don't really report to anybody," he says. "I don't care who my boss is. I can't be managed. I can just be suppressed and frustrated."
Adam Ellison, 39, a senior research scientist who also works in the glass-research group, has been at Corning for only four years. Not long after arriving, he stumbled onto a new kind of glass that he thought might be valuable in Corning's booming fiber-optics business. "I proposed the idea," says Ellison, "and it was shot down. They said, 'Don't work on that. We want you to focus on this.'
"I ignored them, and it led to that." Ellison points to a spool of finished antimony-silicate optical fiber, a developmental product now sending ripples of excitement through Corning's research and business divisions. "We need cowboys, and I'm a cowboy."
Echeverr?a was part of the glass-research group at Corning for seven years before becoming a manager. "I have the group that is regarded as the hardest to manage," she says. "These scientists speak their minds. Their job is to be skeptical and to challenge the system. How can we pay them to do that, then not expect them to do the same with the human system that they are a part of? They don't have much use for people like me -- not me in particular, but this job. And often, they are right."
Listening to Echeverr?a talk through the two jobs that she is asked to perform is dizzying, because they flatly contradict each other.
Job one: Keep the scientists happy. "Scientists, like any other human beings, perform best when they are driven by inspiration," says Echeverr?a. "It's the same in an artist or a scientist. We depend on their creativity. I tell my guys, If you think something is really important, follow your heart. It energizes you, and you give your best performance. That's how you get scientists on a roll -- what for athletes is called 'being in the zone.' "
Job two: Keep Corning happy. After all, the company spends $2 million a day on R&D, and it holds Echeverr?a accountable for her piece of that -- Corning crumbles if there is not ultimately a payoff many times that investment. "People do have a lot of freedom, but that doesn't mean you can get away with murder," Echeverr?a explains. "This is not just a green field where you can run in whatever direction you want. As a group, our performance is evaluated first and foremost on results."
It's hard to imagine a more pointed expression of the central conundrum facing companies, leaders, and rank-and-file workers. In an economy built on ideas, the way to outcompete your rivals is to outcreate your rivals. Creativity is the central force behind growth and success -- it is the source of new products, new ways of working, satisfied employees, and constant renewal, not to mention profits and a soaring stock price. But how do you create creativity?
Corning is a revealing example of the promise of ideas -- and the power of creativity. The company's 1,200 researchers are divided into 10 core-technology groups ( glass is one ), and together, those people are responsible for inventing the future that keeps Corning's 33,000 workers employed. Corning doesn't just celebrate its 149-year history of invention -- it embraces it. Its research furnaces still churn out 100 kinds of experimental glass a day.
In 1998, 57% of the company's sales were from products less than four years old. In 1999, 78% of sales were from products less than four years old, and Corning predicts that 78% of this year's sales will also come from products less than four years old. Corning chairman and CEO Roger Ackerman, 61, speaks without hesitation of his company, which generated less than $5 billion in sales last year, generating $20 billion a year by 2004 or 2005. That would require about 30% annual growth -- all, as it happens, from products that don't exist yet. But Wall Street is betting on Corning's creativity. The company's stock, which was trading for less than $25 per share in 1998, was trading at more than $300 per share earlier this year. And Corning planned a three-for-one stock split for this October.
Still, there's no room for coasting. Optical transmission and networking is an area crowded with high-talent players: JDs Uniphase, Lucent, Nortel, and others. In that environment -- creativity at the speed of light -- Corning's frontline R&D managers have to have spot-on scientific judgment, as well as the nerves of a craps player and the psychological insight of a therapist. The science and the stomach for taking a bet aren't much good without an understanding of the scientists who will invent the company's future, and an understanding of what motivates and frustrates them.
The process of creativity also reveals the perfect paradox of modern business: Truly creative people can't be managed, at least not in the conventional, cubicle sense. Yet if creative people are not managed well -- even brilliantly -- the result is disaster: The creative people are unproductive, or grumpy, or, worse still, gone. Ideas dry up, competitors close in, and a company can end up shriveling. The folks at Apple and Intel understand that. The folks at AT&T, Lucent, Mattel, and Procter & Gamble are still grappling with it.
At Corning, sustained creativity is as much a part of the culture as glass itself ( the company's NYSE symbol is GLW -- "glassworks" ). Corning glassblowers made the first successful lightbulbs for Thomas Edison, and the company went on to invent the machine that mass-produced lightbulbs, making electric light available to ordinary people. But Corning no longer makes lightbulbs.
Corning invented the technology to mass-produce color-TV tubes out of glass, and it owned the market so thoroughly that the company had to negotiate a settlement with the U.S. Justice Department in the 1950s. But Corning doesn't make many conventional color-TV tubes these days.
Corning used to make almost all of the thermometer glass in the country -- including the glass for medical thermometers -- and it invented the technology that allows dishes to go from freezer to oven to table ( and invented the process for applying those floral patterns too ). But Corning no longer makes thermometer glass or dishes.
In a breathless e-world where plenty of companies -- Cisco, Lucent, and Sprint, for starters -- lay claim to building, powering, or running the Internet, Corning invented the one piece of technology without which there would be no Internet: optical fiber.
Corning invents something, Corning invents a way of producing that invention, and eventually other companies copy Corning and run it out of that business. Then Corning reinvents itself.
"That culture," says Ackerman, "has been passed down in the company from generation to generation. It's a style, creating the atmosphere that says, 'We really want you to innovate.' " Ackerman doesn't just want people to innovate; he needs them to.
As with lightbulbs and TV tubes, optical fiber is transforming human society -- and transforming Corning. As lightbulbs and TV tubes once did, optical fiber dominates the company's revenue, and its profits. Fiber is tomorrow. But everyone at Corning knows that fiber is not forever. Something "up on the hill" -- at Corning's vast Sullivan Park R&D campus in Erwin, New York -- is the real future.
Corning has had an R&D lab since 1908, and the company has had plenty of time to study and routinize the process of innovation. In fact, Corning's success at managing that process is the only reason the company is still around. Indeed, successfully managing creativity is as much the "core technology" of Corning as Pyrex, Corning Ware, or LEAF optical fiber.
How does Corning do it?
Corning has an R&D process that combines freedom and discipline. Scientists and their managers have ample room to exercise their curiosity and judgment, but they are accountable for their time every month. Just because there's flexibility doesn't mean there isn't rigor. Corning is constantly balancing the demand for short-term development of existing products against the need for long-term projects. Everyone at the company knows that it took two decades for optical fiber to become an important product. Everyone also knows that it currently supports the entire enterprise.
Once an idea shows promise, a formal five-step innovation process -- a process that everyone knows and understands -- ensures that good ideas get the attention and resources that they need to become products, and to progress briskly. The process also ensures that people eventually stop working on ideas that aren't panning out.
Corning believes that in R&D, people are as important as science. And in some ways, because technical competence at Sullivan Park is assumed, human relations in the lab are even more important than science. People play specific roles in projects -- including the role of "champion" for an idea -- and people play specific roles at Sullivan Park, roles that they often discover themselves.
Corning's scientific creativity connects to Corning's businesses in a very simple way: talk. Not only is there no wall between R&D and the business units, there is a constant tidal flow of unmanaged communication about problems and opportunities. This communication takes place between factories and researchers, and between individual scientists and individual business managers. Necessity is, in fact, often the mother of invention.
Corning assumes that creativity and a scientist's sense of well-being are intimately linked -- and that well-being goes far beyond compensation and a refrigerator filled with free sodas. At Corning, well-being involves things like the ability to get equipment and lab space -- a clear validation of scientific judgment.
Corning scientists transmit and reinterpret their own culture by constantly telling each other stories of their successes and failures. People at Corning know the legendary story of the company's first dramatic innovation, which involved railroad signal lanterns, a primitive form of communication using glass and light that foreshadowed fiber optics. Donald Keck, one of the three inventors of optical fiber, is now a senior manager and research fellow at Sullivan Park.
At the front lines, eggplant-headed Echeverr?a carries Corning's flag with her own sense of style. Unlike most managers, she believes that it is her job to adapt her management to the individual personalities of her scientists, rather than the other way around. In that sense, every single person in her group has a different boss -- ideally, exactly the best boss for that person at that moment.
And Echeverr?a is not afraid of the quirky, moody humanity of her scientists -- she revels in it. "I believe in being in close touch with people as human beings," she says. "I can tell you about the family situation of every one of the people who work for me. I know what kind of work environment suits them. I can see when someone is not motivated."
One of Echeverr?a's distinctive tools is a simple, though uncommon, workplace question: "I am always walking into someone's office and saying to that person, 'How does it feel?' How does it feel -- in this project? In life? I have this conversation often with people, and not just people whose performance concerns me."
She has learned not just to ask the question, but to listen to, and handle, the answers. "I don't want to blind myself into thinking that my perspective is the only valid one. Those conversations keep me on my toes."
Miracles of Glass ( I )
Standard optical fiber, used in the lines that carry telephone conversations and email, is made of some of the purest material not just on Earth, but in the universe.
Consider ordinary window glass: If you stack up three feet of window panes, only a hazy aqua light seeps through. In contrast, the glass used for optical fiber is so clear that if the world's oceans were replaced with optical-fiber glass, the bottom of even the deepest seas would be clearly visible to people at the surface.
Optical-fiber glass, says Corning senior research associate Dana Bookbinder, "is clearer than the air you are looking through."
The Scientific Mission: Why Brilliant People Create
Adam Ellison's desk is legendary. It's not just that there are stacks of paper and glass samples on the desk. The stacks are really interlocking geologic layers cascading into each other, the material from 6 inches to 9 inches deep. The tops of the stacks are choppy, like a whitecapped sea, and some familiar objects bob into view: a radio, for playing classical music; a boxed 4-CD set of French language lessons; a can of soy-protein powder. The actual surface of the desk itself is invisible.
Ellison's desk is so legendary that fellow scientist Dan Hawtof once played what he thought was a wonderful joke on Ellison. He took a newly hired scientist with him to Ellison's office, and they hid a banana on the desk. ( Hawtof's own desk is so clean that it looks as if it was just uncrated. ) A week later, amid much hilarity, they reclaimed the banana, considerably riper, but unmoved.
Ellison waves off the prank. "I don't eat bananas," he says. "I knew the banana was there. I figured someone left their banana in my office and would eventually come back and get it." He squints in mock warning: "I know when anyone has touched my desk. I can always tell when someone has disturbed the force."
Nestled atop a hill outside the city of Corning, New York proper, Sullivan Park is a campus of 1,200 people and seven buildings that is devoted exclusively to R&D for Corning. Wandering around, you often stumble into the stereotypes of scientists.
In truth, Americans don't have much exposure to the daily work of scientists, certainly not compared to our exposure, through TV, to the work of detectives, doctors, and lawyers. Popular culture offers a handful of cartoon images: the addled, absentminded scientists of Disney comedies; the idealistic, if isolated, scientists of university labs; and the faintly evil, or at least greedy and corrupt, scientists who work for corporations, or for the villains in James Bond movies.
So scientists like Ellison are striking, in one sense, for the clarity of their motives in working for a big company. Most have rejected academia -- which is a kind of false nirvana, despite the public perception -- for a setting where they can actually accomplish something.
Ellison earned his PhD in geology from Brown when he was just 25, and he worked at Princeton and at Argonne National Laboratory before coming to Corning. "I decided consciously that I wanted to be in a corporation, not at a university," says Ellison. "At a university or a national lab, you can piss away your whole career doing stuff -- important stuff, brilliant stuff -- that doesn't matter. It's just sitting in a journal somewhere, and no one even reads it. Here, someone always cares about what I'm doing."
Division VP David Morse, Ellison's boss one level above Echeverr?a, puts it even more directly: "I aspired to creating jobs -- inventing stuff and creating jobs," he says. Morse, 48, a widely regarded scientist and widely praised manager who has been at Corning for nearly 25 years, joined the company after earning his PhD in inorganic chemistry from MIT at age 23. "As a scientist inside a company, you have fantastic leverage. If you invent things, invent new materials, you can allow the life of a factory to go on -- a place that employs all of those people. That was my motivation," he says.
Two big projects bracket the time that Ellison has been with Corning. When he first arrived -- he takes great amusement in his first day having been April Fools' Day, in 1996 -- he was immediately put on a SWAT team working to solve manufacturing problems with Corning's flat-panel, LCD glass, used in color laptops, in PalmPilots, and, increasingly, in all sorts of wide-screen flat-panel displays. "I'm not sure I even sat down at my desk first," he says.
That, in fact, is one way that Sullivan Park scientists get work: Someone tells them, or, more commonly, asks them, to solve a problem. The freedom that a scientist has to accept or reject such an assignment varies with seniority, the scarcity of the necessary talent, the urgency of the request, the urgency of other projects -- and how much a scientist cares about the consequences of saying no.
The glass in your Apple G3 laptop screen is nothing like the glass in your sunglasses or in your car windshield. LCD glass, in fact, is a classic Corning product. Most consumers don't realize that their color-laptop screen is probably made by Corning, which owns about 70% of the world market for high-end LCD glass.
And how did that cutting-edge glass get its start in life? When a Corning scientist in the mid-1960s let a trough of liquid glass overflow, the glass ran down both sides, rejoined at the bottom of the trough, then flowed down like a giant sheet, hardening into a piece of flawless glass. Neither of its outside surfaces had touched anything but air during its creation.
For two decades, Corning searched for a use for such a marvelous product. At first, it tried to sell it to carmakers for windshields and to eyeglass makers for lenses, but it was too expensive for either use. It was when the makers of computer screens started demanding high-performance glass that Corning's "overflow glass" found its moment.
LCD glass is a premium product. Because it is designed to have layers of semiconductors and corresponding color filters applied to it, it must be absolutely flawless in composition and flawless in creation. And that presented a problem for Corning: Too many sheets of LCD glass had flaws in them. "If there was one inclusion that blocked a single pixel on a sheet of glass a meter wide," Ellison explains, "the customer would reject the entire sheet and then call Corning to complain."
Solving the problem -- which was wasting lots of high-purity glass and lots of customer goodwill -- meant more than sending a couple of people to the plant to figure out what was going on. Several dozen people struggled for months, doing fundamental glass analysis and process modeling, often coming up with solutions that were great lab ideas, but that wouldn't work in a factory.
"We'd say, 'We can solve the problem this way,' " says Ellison, "and the factory guys would say, 'Yeah, when hell freezes over!' " Ultimately, the LCD team traced the defects, and the factory worked out a process to eliminate them.
Four years after that first assignment, Ellison has four major projects bubbling and another four simmering. But one project dominates his time: his discovery of a completely new kind of glass that uses the element antimony. Although the epiphany of the idea, and the first melting and pouring of the glass, happened more than 18 months ago, he talks about it with spontaneous delight.
"What kind of glass does antimony make? It's a gorgeous glass! Brilliant, white glass. But it's also very sensitive to contamination. Any contamination, and it turns a lurid yellow. It is something new under the sun," he says. "It's a very uncommon thing at this stage -- after 100 years of glass research -- to find a breakthrough glass. Antimony is in the backwaters of the periodic table. It's really pretty weird." ( Although antimony has only a few commercial uses, a little-known one is of great value: Antimony imparts fire-resistance to children's clothing. ) |