SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Pastimes : The Case for Nuclear Energy

 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext  
To: CVJ who wrote (67)4/2/2001 8:19:34 AM
From: Hawkmoon  Read Replies (1) of 312
 
Here's some info I found on how Pu-239 is created:

The isotope Pu-239 was produced on March 28, 1941 by bombarding a U-238 target with neutrons to produce U-239 (half-life of 23.5 minutes). This radionuclide decayed by beta emission to Np-239 (half-life of 2.12 days), which subsequently decayed by beta emission to Pu-239 (which has a very long half-life of 24,600 years).

Plutonium is produced in nature through the reasonably well-understood process discussed above. Uranium is a naturally occurring element that is ubiquitous in the Earth's crust. The isotopes of uranium decay primarily by alpha-particle emission, but there is also a process called "spontaneous fission" that occasionally competes with alpha decay.

In spontaneous fission, the nucleus splits ("fissions") and additional neutrons are released. There is a possibility that these released neutrons are absorbed (captured) by another U-238 nucleus. If this occurs, it triggers a process that produces Pu-239 in a manner similar to that discussed above. Thus, we have plutonium produced naturally in the environment (admittedly in trace quantities). This reaction has been going on since the creation of the Earth.


sciam.com
Report TOU ViolationShare This Post
 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext