SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Technology Stocks : Amazon.com, Inc. (AMZN)
AMZN 227.90+0.4%Dec 9 3:59 PM EST

 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext  
To: GST who wrote (141997)4/29/2002 10:12:00 PM
From: H James Morris  Read Replies (2) of 164684
 
Welcome back. Did you bring back any "unstoppable" tornadoes with you??:O)
>>Tornado, violently rotating column of air extending from within a thundercloud (see Cloud) down to ground level. The strongest tornadoes may sweep houses from their foundations, destroy brick buildings, toss cars and school buses through the air, and even lift railroad cars from their tracks. Tornadoes vary in diameter from tens of meters to nearly 2 km (1 mi), with an average diameter of about 50 m (160 ft). Most tornadoes in the northern hemisphere create winds that blow counterclockwise around a center of extremely low atmospheric pressure. In the southern hemisphere the winds generally blow clockwise. Peak wind speeds can range from near 120 km/h (75 mph) to almost 500 km/h (300 mph). The forward motion of a tornado can range from a near standstill to almost 110 km/h (70 mph).

A tornado becomes visible when a condensation funnel made of water vapor (a funnel cloud) forms in extreme low pressures, or when the tornado lofts dust, dirt, and debris upward from the ground.

A mature tornado may be columnar or tilted, narrow or broad—sometimes so broad that it appears as if the parent thundercloud itself had descended to ground level. Some tornadoes resemble a swaying elephant's trunk. Others, especially very violent ones, may break into several intense suction vortices—intense swirling masses of air—each of which rotates near the parent tornado. A suction vortex may be only a few meters in diameter, and thus can destroy one house while leaving a neighboring house relatively unscathed.

Scientists study tornadoes to gain a better understanding of their formation, behavior, and structure. Scientists who study tornadoes have a variety of powerful research tools at their disposal. Advances in computer technology make it possible to simulate the thunderstorms that spawn tornadoes using computer models running on desktop computers. Doppler radars, which detect the rain in clouds, allow meteorologists, scientists who study weather, to "see" the winds inside the storms that spawn tornadoes. Modern video camera footage and reports from trained storm-spotters provide an unprecedented amount of high-quality tornado documentation. These tools all contribute greatly to the scientific understanding of tornadoes. This information may eventually lead to increased tornado warning times, better guidelines for building construction (especially schools), and improved safety tips.
Report TOU ViolationShare This Post
 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext