Perhaps. Here is a little light reading from Yongquist. His arguments seem to be well reasoned and so far I have not seen anything on this board to contradict his point of view.
"Myth: Alternative energy sources can readily replace oil This is the assumption made by many people who advocate alternative energy sources as an early easy solution to our dependence on imported oil, and the perceived negative environmental effects of burning oil. Reality: The facts relative to this myth are mixed. Alternative energy sources can replace oil in its energy uses, but in some uses much less conveniently than in others. Fuel oil used under steam boilers can be replaced by nuclear fuel, or coal. But replacing gasoline, kerosene, and diesel fuel for use in vehicles, airplanes in particular, by an alternative energy source will be much more difficult.. At the present time, 97 percent of the world's approximately 600 million vehicles are powered by some form of oil. Going to another fuel source to meet this huge energy demand now met by the convenient, easily transported, very high grade energy source which is oil will not be easy. The British scientist, Sir Crispin Tickell, states a very important fact, "...we have done remarkably little to reduce our dependence on a fuel which is a limited resource, and for which there is no comprehensive substitute in prospect."(28) It is very important to note that there is no apparent replacement for oil in the volumes and ways in which we now use it. The transition to a comparable energy source or sources will be difficult, and probably much less convenient than using oil. Even if it could be done it would markedly change the lifestyle of industrialized society as we know it today. This leads to the next and related myth. Myth: Alternative energy sources can simply be plugged into our present economic system and lifestyle, and things will go on as usual This also is a common assumption with regard to a transition to alternative energy sources, even to the major renewable energy source, solar. People do not appreciate the close relationship between the current energy sources, principally oil, and the control which energy forms have over the activities of their daily lives, and where and in what sorts of structures they live and work, and use for transportation. Reality: Conversion to a solar energy economy would involve vast construction projects installing huge collecting systems. Houses and factories would have to be redesigned to much more energy efficient standards. In transport, an electric economy means electric cars, and the facilities to generate huge amounts of power beyond what is presently being used. And the electric car, as far as can be visualized with reasonably foreseeable technology, would not offer the degree of mobility which gasoline powered vehicles do. This would markedly alter both the work and recreational habits of people. It would markedly affect recreational related economies. Other energy sources, beyond oil, similarly would involve a restructuring of daily routines. Our activities are very much controlled by the energy forms which we use. Our standard of living is largely a function of how much and in what form we can command energy supplies. Changing from the energy form which is oil to other energy sources can and will have to be done, but lifestyles will be altered, as may also be the standard of living. Myth: Alternative energy sources are environmentally benign Advocates of alternative energy sources, commonly believe that these energy supplies have very little impact on the environment. Sunlight as a source of energy would seem to be an ideal energy source with virtually no negative environmental consequences. Or, converting a relatively more polluting source of energy such as coal into a less polluting liquid fuel appears to be a good exchange. Reality: Converting coal to some liquid fuel form which could be used in transportation is possible but to do so to the extent of replacing oil would involve the greatest mining endeavor the world has ever seen. It would require strip mining vast quantities of western land each year. If alternative energy considerations do not include coal, but rather are thought of in terms of solar energy, biomass, nuclear power, wind, hydropower, tidal, ocean thermal energy conversion (OTEC) or shale oil, they also have environmental impacts. These have been discussed in more detail in Chapter 22, Mineral Development and the Environment, but some of the environmental problems are briefly summarized here. Solar energy collectors in numbers sufficient to be significant in our energy supplies would use very large amounts of land. Mining the materials used to make these collectors would have an impact. Because the collectors would not have an infinite life, there would be the continual problem of replacement, involving more mining operations. The environmental impact of using biomass as a major source of energy would be huge, especially in terms of the degradation of the highly important mineral resource, soil. Nuclear energy from fission has the potential (and the reality, in the case of Cherynoble) of having a huge impact on the environment. Fusion nuclear power is relatively more safe but not entirely so. Wind power devices are unsightly, noisy, kill birds, and, like solar collectors, deteriorate and have to be replaced with more materials mined from the Earth. Tidal power, hydroelectric power, and OTEC have undesirable effects on aquatic environments. If oil shale is part of the energy alternative for the United States, the impact of developing that energy source on already scarce southwestern water resources would be large, and probably not sustainable. In brief, as the saying goes, "there is no free lunch" in the use of any alternative energy source with respect to the environment. All make an impact. Eventually some or all of these sources will be used. The decisions to be made involve which sources have the least environmental effects and yet can meet the projected energy demands. With an ever-increasing world population requiring more and more energy, any energy source or combination of sources which will adequately meet this demand will inevitably have a large environmental impact, by the sheer size of the operations. Myth: Biomass—plants—can be a major source of liquid fuels This myth comes up frequently, and it has been rather thoroughly explored through various projects and proven to be a myth. A variety of plants including greasewood in the arid Southwest U.S., sugar cane, sugar beets, trees in general, seaweed, and seeds have been cited as important possible sources of liquid fuel for the future. In 1979, an article in a widely read U.S. magazine states: "Myriad forms of natural organic matter can provide heat or be converted into gas, oil, or alcohol. Wood holds the most immediate promise."(9) Reality: In regard to wood as an alternative liquid fuel, a final report on a U.S. government-sponsored project on the conversion of wood to a liquid fuel stated as a conclusion: "Investigations to date have led the authors to be optimistic about the possibilities of oil from biomass. While difficulties in bringing the current facilities on-stream have somewhat limited information to date, it is felt that a vigorous activity in the future can eventually provide a new source of energy for the country in the form of oil from biomass."(6) A translation of this statement might be that "the project didn't turn out very well, but maybe in the future a lot of research could improve results." That may or may not be true. The project involved wood-to-oil conversion, and one conclusion was that "Information gained here should provide the means to be commercially competitive by approximately 1990."(6) The project was abandoned in 1981. No wood anywhere in the world is now being converted to liquid fuel. There are several reasons why converting growing plants to oil will not be a significant substitute for oil obtained from wells. These have been touched upon in other chapters. Briefly they are: The energy conversion efficiencies are low, in some cases as with ethanol from corn, it is negative. The energy cost of harvesting and transporting the materials is high relative to the energy produced. In the case of wood, cutting the trees and loading and hauling them to a processing plant would be energy intensive even before processing into a liquid. The volumes of plant material available are not sufficient to yield large amounts of oil, given the low energy conversion efficiencies. The degradation of the land growing these materials by continuing harvesting without returning the fiber to the land is severe. If wood is considered, there is already a scarcity of wood in most of the world. In the form of wood waste (little is wasted now) there is insufficient raw material from this source to provide significant amounts of feedstock to convert to liquid fuel. The best land is now under cultivation for much needed human food supplies. If plants were used for raw material for liquid fuel conversion they would either have to displace food crops from present agriculturally developed land, or put marginal lands (thin soil, steep hillsides) into production which would greatly increase land degradation by erosion, and also have serious downstream effects, including silting up of reservoirs. In final view, the Energy Research Advisory Board of the U.S. Department of Energy stated in 1981 (U.S. population then was 258 million compared with 267 now), that the 258 million Americans used 40 percent more fossil energy than the total amount of solar energy captured each year by all U.S. plant mass. Current annually available biomass volume is no significant replacement for the large storehouse of organic energy accumulated over millions of years in the form of coal and petroleum. In summary, biomass, at least considering the size of world population today which has to be supported by crops, cannot be diverted from food supplies in significant quantities to be important as a liquid fuel, and at best energy conversion efficiencies from biomass to oil are low. The environmental impact of using biomass for conversion to liquid fuel on a large scale would be severe and unacceptable. Biomass is not a potential source of significant quantities of liquid fuel." |