While you two piddle with piddle, I have been saying for at least 4 YEARS that bpi-21 is INVISIBLE to ANCA and therefore that makes it an IDEAL drug candidate for CF when used PRIOR to manifestations. Check this out (10/2003) l2.espacenet.com BACKGROUND OF TIE INVENTION [0002] The present invention relates generally to novel improved methods of treating cystic fibrosis patients by administering N-terminal bactericidal/permeability-increasing protein (BPI) protein products. The present invention also relates generally to improved formulations for aerosol delivery to cystic fibrosis patients of BPI protein products alone or in combination with other therapeutic agents. [0003] Cystic fibrosis (CF) is the most common lethal inherited disorder among Caucasian populations, affecting between 1 in 2000 to 1 in 4500 children. CF is a recessive disorder resulting from a defect in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, a member of the ATP binding cassette (ABC) superfamily, located on the long arm of chromosome seven, that is thought to encode a cAMP-regulated chloride ion channel. CF is characterized by chronic pulmonary infection and colonization of the lungs by gram-negative bacteria (predominantly Pseudomonas aeruginosa), pulmonary inflammation, and progressive pulmonary damage, as well as pancreatic insufficiency. There is prominent pulmonary neutrophil infiltration, and levels of the neutrophil enzyme elastase found in the sputum of CF patients are so high as to overwhelm the host's elastase inhibitor [alpha]1-antitrypsin. In addition, CF is associated with various extra-pulmonary autoimmune phenomena, including arthropathy, liver disease resembling sclerosing cholangitis, and both cutaneous and systemic vasculitis. Due to improvements in therapy, more than 25% of the patients reach adulthood and more than 9% live past the age of 30. [Harrison's Principles of Internal Medicine, 13th ed., Isselbacher et al., eds., McGraw-Hill, NY.] [0004] Pulmonary treatment of cystic fibrosis patients requires delivery of therapeutic quantities of drug to the lungs. This is typically done by inhaling either an aerosol or dry powder form of the drug. Aerosol delivery of proteins can be accomplished using either a nebulizer or a metered dose inhaler. There are two basic types of nebulizers: jet and ultrasonic. [0005] Jet nebulizers make use of the Bernoulli principle; a stream of air or oxygen from compressed cylinder or compressor is passed through a narrow constriction known as a venturi, thereby generating an area of low pressure which causes drug solution from a reservoir to be drawn up into the venturi, where it is fragmented into droplets by the airstream. Only the smallest droplets exit the nebulizer while the others impact on a baffle and return to the reservoir. Droplet size for jet nebulizers is inversely proportional to the air flow rate. Ultrasonic nebulizers use a rapidly vibrating piezoelectric crystal to create small droplets. Ultrasonic vibrations from the crystal produce standing waves on the surface of the drug solution. Droplets then break free from the wave crests. Droplet size for ultrasonic nebulizers is inversely proportional to the ultrasonic frequency. Jet nebulizers tend to produce smaller droplets and cause less cough and irritation than ultrasonic nebulizers. [0006] The lung deposition characteristics and efficacy of an aerosol depend largely on the particle or droplet size. Generally, the smaller the droplet, the greater its chance of peripheral penetration and retention. Very fine particles below 0.5 [mu]m in diamater, however, may be exhaled without being deposited. One study reported that central airway deposition peaks at 6-7 [mu]m and peripheral airway deposition at 2-3 [mu]m. Particles with a diameter in the range of about 1 to about 5 [mu]m are thus generally accepted as the target droplet size for delivery of pharmaceutical aerosols [O'Callaghan et al., Thorax, 52:531-544 (1997)], while droplet sizes in the range of about 1 to about 3 [mu]m are useful for reaching the alveolar portion of the lung. [0007] The efficiency of drug delivery to the lungs depends on a variety of factors, including nebulizer type, airflow rate, drug formulation components, drug concentration and drug volume. Formulation components may also affect the incidence of adverse side effects such as throat irritation, coughing and bronchoconstriction. For example, osmolality affects bronchoconstriction. [Fine et al., Am. Rev. Respir. Dis., 135:826-830 (1987); Balmes et al., Am. Rev. Respir. Dis., 138:35-39 (1988).] Certain buffer salts can lead to irritation of the throat and coughing. [Godden et al., Clinical Sci., 70:301-306 (1986); Auffarth et al., Thorax, 46:638-642 (1991); Snell, Respir. Med., 84:345-348 (1990).] In one study, solutions of urea, water, sodium acetate and sodium bicarbonate increased coughing while a solution of sodium chloride did not. [Godden et al., supra.] In addition, for non-isotonic solutions, uptake or loss of water in the airways can change droplet size distribution; for this reason, formulations are generally recommended to be isotonic. [Gonda et al., in Particle Size Analysis, Stanley-Wood, ed., Wiley Heyden Ltd., New York, N.Y. (1983), page 52; Gonda et al., in Aerosols, Masuda and Takahashi, eds., Pergamon Press, New York, N.Y. (1991), pages 227-230.] Formulations having a pH of 5.0 or greater are reported to minimize side effects. [Beasley et al., Br. J. Clin. Pharmacol., 25:283-287 (1988).] [0008] Delivery efficiency DE (defined as the percentage of drug in the nebulizer which reaches the lung) is the product of nebulizer efficiency NE (percentage of drug which exits the nebulizer) and respirable fraction RF (percentage of aerosol droplets which have exited the nebulizer that are of the correct size range for deposition in the lungs). The following equation summarizes the relationship: DE=NE*RF. [0009] The nebulization process can be very harsh for proteins because it increases the exposure of protein molecules to the air-liquid interface, which results in some cases in denaturation and subsequent precipitation of the protein. Therefore, a need exists for improved formulations which can be delivered by nebulization with good nebulizer efficiency and delivery efficiency. [0010] Anti-neutrophil cytoplasmic antibodies (ANCA) have been recognized as a class of autoantibodies that react with the endogenous cytoplasmic constituents of neutrophils and monocytes. ANCA are detected by indirect immunofluorescence (IIF) on ethanol-fixed neutrophils. The presence of ANCA has been associated with some cystic fibrosis patients, with various idiopathic systemic vasculitis disorders (i.e., inflammation of and damage to the blood vessels) and with other inflammatory disorders, and can be diagnostic of certain vasculitides. These vasculitides are sometimes called ANCA-associated vasculitides (AAV). A pathophysiologic role for ANCA in vasculitides has been proposed but remains to be definitively established. [Kallenberg et al., Clin. Exp. Immunol., 100:1-3 (1995).] Some of the antigens recognized by ANCA have been identified, such as proteinase-3 (PR-3) and myeloperoxidase (MPO). [0011] Zhao et al., Q. J. M., 89(4):259-265 (1996) report that sera from 60/66 (91%) adult CF patients had autoantibodies to BPI. The specificity of these antibodies was confirmed by inhibition studies with purified BPI. None of these 66 samples recognized PR-3 or MPO, and only 21 (32%) of the 66 samples were cANCA-positive by IIF. Thus, BPI was identified as the major ANCA antigen in CF. Furthermore, the levels of anti-BPI antibody, particularly anti-BPI IgA, significantly correlated with clinical parameters such as reductions in pulmonary function and the presence of secondary vasculitis. Zhao et al. suggested that the late autoimmune complications observed in CF patients might be related to anti-BPI autoantibodies, which may also be involved in the activation of neutrophils and tissue damage in the lungs. [0012] BPI is a protein isolated from the granules of mammalian polymorphonuclear leukocytes (PMNs or neutrophils), which are blood cells essential in the defense against invading microorganisms. Human BPI protein has been isolated from PMNs by acid extraction combined with either ion exchange chromatography [Elsbach, J. Biol. Chem., 254: 11000 (1979)] or E. coli affinity chromatography [Weiss, et al., Blood, 69:652 (1987)]. BPI obtained in such a manner is referred to herein as natural BPI and has been shown to have potent bactericidal activity against a broad spectrum of gram-negative bacteria. The molecular weight of human BPI is approximately 55,000 daltons (55 kD). The amino acid sequence of the entire human BPI protein and the nucleic acid sequence of DNA encoding the protein have been reported in FIG. 1 of Gray et al., J. Biol. Chem., 264:9505 (1989), incorporated herein by reference. The Gray et al. amino acid sequence is set out in SEQ ID NO: 1 hereto. U.S. Pat. No. 5,198,541 discloses recombinant genes encoding and methods for expression of BPI proteins, including BPI holoprotein and fragments of BPI. [0013] BPI is a strongly cationic protein. The N-terminal half of BPI accounts for the high net positive charge; the C-terminal half of the molecule has a net charge of -3. [Elsbach and Weiss (1981), supra.] A proteolytic N-terminal fragment of BPI having a molecular weight of about 25 kD possesses essentially all the anti-bacterial efficacy of the naturally-derived 55 kD human BPI holoprotein. [Ooi et al., J. Bio. Chem., 262: 14891-14894 (1987)]. In contrast to the N-terminal portion, the C-terminal region of the isolated human BPI protein displays only slightly detectable anti-bacterial activity against gram-negative organisms. [Ooi et al., J. Exp. Med., 174:649 (1991).] An N-terminal BPI fragment of approximately 23 kD, referred to as "rBPI23," has been produced by recombinant means and also retains anti-bacterial activity against gram-negative organisms. [Gazzano-Santoro et al., Infect. Immun. 60:4754-4761 (1992).] An N-terminal analog of BPI, rBPI21, has been produced as described in Horwitz et al., Protein Expression Purification, 8:28-40 (1996). [0014] The bactericidal effect of BPI has been reported to be highly specific to gram-negative species, e.g., in Elsbach and Weiss, Inflammation: Basic Principles and Clinical Correlates, eds. Gallin et al., Chapter 30, Raven Press, Ltd. (1992). The precise mechanism by which BPI kills gram-negative bacteria is not yet completely elucidated, but it is believed that BPI must first bind to the surface of the bacteria through electrostatic and hydrophobic interactions between the cationic BPI protein and negatively charged sites on LPS. In susceptible gram-negative bacteria, BPI binding is thought to disrupt LPS structure, leading to activation of bacterial enzymes that degrade phospholipids and peptidoglycans, altering the permeability of the cell's outer membrane, and initiating events that ultimately lead to cell death. [Elsbach and Weiss (1992), supra]. LPS has been referred to as "endotoxin" because of the potent inflammatory response that it stimulates, i.e., the release of mediators by host inflammatory cells which may ultimately result in irreversible endotoxic shock. BPI binds to lipid A, reported to be the most toxic and most biologically active component of LPS. [0015] BPI protein products, as discussed infra, have a wide variety of beneficial activities in addition to their gram-negative bactericidal activities. The observation of antibodies that are reactive against BPI among cystic fibrosis patients suggests that these antibodies may interfere with the activities of BPI. A need therefore exists for improved methods of treating cystic fibrosis patients that have BPI-reactive antibodies with BPI protein products.
SUMMARY OF THE INVENTION [0016] The present invention provides novel improved methods of treating cystic fibrosis patients that have non N-terminal-BPI-reactive antibodies by administering N-terminal bactericidal/permeability-increasing (BPI) protein products. The invention is based on the discovery that BPI-reactive antibodies in cystic fibrosis patients bind to BPI holoprotein but have little or no reactivity with N-terminal BPI protein products. Interference with the beneficial activities of endogenous BPI or exogenous BPI protein products can therefore be avoided by administering N-terminal BPI protein products. [0017] It is contemplated that these improved methods will be useful when the N-terminal BPI protein product is being administered for any of the indications presently known for BPI protein products. For example, the N-terminal BPI protein product may be administered to a human subject to ameliorate adverse effects associated with endotoxin in circulation, meningococcemia, hemorrhagic trauma, burn trauma, ischemia/reperfusion injury, or liver resection injury. A N-terminal BPI protein product may also be administered for the treatment of gram-negative bacterial infection, gram-positive bacterial or mycoplasmal infection, fungal infection, protozoal infection, chlamydial infection, mycobacterial infection, chronic inflammatory diseases, including rheumatoid and reactive arthritis, or to enhance the effectiveness of antimicrobial activity, or to inhibit angiogenesis or to promote fibrinolysis. [0018] Presently preferred N-terminal BPI protein products include amino-terminal fragments of BPI having a molecular weight of about 20 kD to 25 kD, rBPI23 or a dimeric form thereof, and rBPI21. [0019] It is contemplated that the administration of BPI protein products, especially N-terminal BPI protein products, according to all aspects of the present invention may be accompanied by the concurrent administration of other therapeutic agents such as antimicrobial agents, including antibiotics and anti-fungal agents, or agents such as DNAase (Pulmozyme(R)). [0020] The invention also contemplates compositions for aerosol delivery comprising a BPI protein product and a poloxamer (polyoxypropylene-polyoxyethylene block copolymer) surfactant at a concentration of 0.3% or more. Such compositions are useful in methods for treating cystic fibrosis patients with BPI protein products. [0021] Numerous additional aspects and advantages of the invention will become apparent to those skilled in the art upon consideration of the following detailed description of the invention which describes presently preferred embodiments thereof.
DETAILED DESCRIPTION OF THE INVENTION [0022] The present invention provides improved methods of treating cystic fibrosis patients that have non-N-terminal-BPI-reactive antibodies, the presence of which may interfere with the activities of BPI protein products in these subjects, by the administration of N-terminal BPI protein products. The invention is based on the discovery that BPI-reactive autoantibodies in cystic fibrosis patients bind to BPI holoprotein but have little or no reactivity with N-terminal BPI protein products; the ANCA-recognized epitopes thus appear to reside predominantly outside the N-terminal 193 amino acids of BPI. [0023] BPI protein products are known to have a variety of beneficial activities. BPI protein products are known to be bactericidal for gram-negative bacteria, as described in U.S. Pat. Nos. 5,198,541 and 5,523,288, both of which are incorporated herein by reference. BPI protein products are also known to enhance the effectiveness of antibiotic therapy in gram-negative bacterial infections, as described in U.S. Pat. No. 5,523,288, which is incorporated herein by reference. BPI protein products are also known to be bactericidal for gram-positive bacteria and mycoplasma, and to enhance the effectiveness of antibiotics in gram-positive bacterial infections, as described in co-owned, co-pending U.S. application Ser. No. 08/372,783 filed Jan. 13, 1995, which is in turn a continuation-in-part of U.S. application Ser. No. 08/274,299 filed Jul. 11, 1994, and corresponding International Publication No. WO 95/08344 (PCT/US94/11225), all of which are incorporated herein by reference. BPI protein products are further known to exhibit anti-fungal activity, and to enhance the activity of other anti-fungal agents, as described in co-owned, co-pending U.S. application Ser. No. 08/372,105 filed Jan. 13, 1995, which is in turn a continuation-in-part of U.S. application Ser. No. 08/273,540 filed Jul. 11, 1994, and corresponding International Publication No. WO 95/19179 (PCT/US95/00498), and further as described for anti-fungal peptides in co-owned, co-pending U.S. application Ser. No. 08/621,259 filed Mar. 21, 1996, which is in turn a continuation-in-part of U.S. application Ser. No. 08/504,841 filed Jul. 20, 1994 and corresponding International Publication No. WO 96/08509 (PCT/US95/09262) and PCT Application No. PCT/US96/03845, all of which are incorporated herein by reference. BPI protein products are further known to exhibit anti-protozoan activity, as described in co-owned, co-pending U.S. application Ser. No. 08/273,470 filed Jul. 11, 1994 and corresponding International Publication No. WO 96/01647 (PCT/US95/08624), all of which are incorporated herein by reference. BPI protein products are known to exhibit anti-chlamydial activity, as described in co-owned, co-pending U.S. application Ser. No. 08/694,843 filed Aug. 9, 1996, all of which are incorporated herein by reference. Finally, BPI protein products are known to exhibit anti-mycobacterial activity, as described in co-owned, co-pending U.S. application Ser. No. 08/626,646 filed Apr. 1, 1996, which is in turn a continuation of U.S. application Ser. No. 08/285,803 filed Aug. 14, 1994, which is in turn a continuation-in-part of U.S. application Ser. No. 08/031,145 filed Mar. 12, 1993 and corresponding International Publication No. WO94/20129 (PCT/US94/02463), all of which are incorporated herein by reference. [0024] The effects of BPI protein products in humans with endotoxin in circulation, including effects on TNF, IL-6 and endotoxin are described in co-owned, co-pending U.S. application Ser. No. 08/378,228, filed Jan. 24, 1995, which in turn is a continuation-in-part application of U.S. Ser. No. 08/291,112, filed Aug. 16, 1994, which in turn is a continuation-in-part application of U.S. Ser. No. 08/188,221, filed Jan. 24, 1994, and corresponding International Publication No. WO 95/19784 (PCT/US95/01151), all of which are incorporated herein by reference. [0025] BPI protein products are also known to be useful for treatment of specific disease conditions, such as meningococcemia in humans (as described in co-owned, co-pending U.S. application Ser. No. 08/644,287 filed May 10, 1996, incorporated herein by reference), hemorrhagic trauma in humans, (as described in co-owned, co-pending U.S. application Ser. No. 08/652,292 filed May 23, 1996, incorporated herein by reference), burn injury (as described in U.S. Pat. No. 5,494,896 and corresponding International Publication No. WO 96/30037 (PCT/US96/02349), both of which are incorporated herein by reference), ischemia/reperfusion injury (as described in co-owned, co-pending U.S. application Ser. No. 08/232,527 filed Apr. 22, 1994, incorporated herein by reference), and liver resection (as described in co-owned, co-pending U.S. application Ser. No. 08/582,230 filed Jan. 3, 1996, which is in turn a continuation of U.S. application Ser. No. 08/318,357 filed Oct. 5, 1994, which is in turn a continuation-in-part of U.S. application Ser. No. 08/132,510 filed Oct. 5, 1993, and corresponding International Publication No. WO 95/10297 (PCT/US94/11404), all of which are incorporated herein by reference). [0026] BPI protein products are also known to neutralize the anti-coagulant activity of exogenous heparin, as described in U.S. Pat. No. 5,348,942, incorporated herein by reference, as well as to be useful for treating chronic inflammatory diseases such as rheumatoid and reactive arthritis and for inhibiting angiogenesis and for treating angiogenesis-associated disorders including malignant tumors, ocular retinopathy and endometriosis, as described in co-owned, co-pending U.S. application Ser. No. 08/415,158 filed Mar. 31, 1995, which is in turn a continuation of U.S. application Ser. No. 08/093,202, filed Jul. 15, 1993, which is in turn a continuation-in-part of U.S. application Ser. No. 08/030,644, filed Mar. 12, 1993, all of which are incorporated herein by reference. [0027] BPI protein products are also known for use in antithrombotic methods, as described in co-owned, co-pending U.S. application Ser. No. 08/644,290 filed May 10, 1996, incorporated herein by reference. [0028] As used herein, "BPI protein product" includes naturally and recombinantly produced BPI protein; natural, synthetic, and recombinant biologically active polypeptide fragments of BPI protein; biologically active polypeptide variants of BPI protein or fragments thereof, including hybrid fusion proteins and dimers; biologically active polypeptide analogs of BPI protein or fragments or variants thereof, including cysteine-substituted analogs; and BPI-derived peptides. The BPI protein products administered according to this invention may be generated and/or isolated by any means known in the art. U.S. Pat. No. 5,198,541, the disclosure of which is incorporated herein by reference, discloses recombinant genes encoding, and methods for expression of, BPI proteins including recombinant BPI holoprotein, referred to as rBPI and recombinant fragments of BPI. U.S. Pat. No. 5,439,807 and corresponding International Publication No. WO 93/23540 (PCT/US93/04752), which are all incorporated herein by reference, disclose novel methods for the purification of recombinant BPI protein products expressed in and secreted from genetically transformed mammalian host cells in culture and discloses how one may produce large quantities of recombinant BPI products suitable for incorporation into stable, homogeneous pharmaceutical preparations. [0029] Biologically active fragments of BPI (BPI fragments) include biologically active molecules that have the same or similar amino acid sequence as a natural human BPI holoprotein, except that the fragment molecule lacks amino-terminal amino acids, internal amino acids, and/or carboxy-terminal amino acids of the holoprotein. Nonlimiting examples of such fragments include an N-terminal fragment of natural human BPI of approximately 25 kD, described in Ooi et al., J. Exp. Med., 174:649 (1991), and the recombinant expression product of DNA encoding N-terminal amino acids from 1 to about 193 to 199 of natural human BPI, described in Gazzano-Santoro et al., Infect. Immun. 60:4754-4761 (1992), and referred to as rBPI23. In that publication, an expression vector was used as a source of DNA encoding a recombinant expression product (rBPI23) having the 31-residue signal sequence and the first 199 amino acids of the N-terminus of the mature human BPI, as set out in FIG. 1 of Gray et al., supra, except that valine at position 151 is specified by GTG rather than GTC and residue 185 is glutamic acid (specified by GAG) rather than lysine (specified by AAG). Recombinant holoprotein (rBPI) has also been produced having the sequence (SEQ ID NOS: 145 and 146) set out in FIG. 1 of Gray et al., supra, with the exceptions noted for rBPI23 and with the exception that residue 417 is alanine (specified by GCT) rather than valine (specified by GTT). Other examples include dimeric forms of BPI fragments, as described in U.S. Pat. No. 5,447,913 and corresponding International Publication No. WO 95/24209 (PCT/US95/03125), all of which are incorporated herein by reference. [0030] Biologically active variants of BPI (BPI variants) include but are not limited to recombinant hybrid fusion proteins, comprising BPI holoprotein or biologically active fragment thereof and at least a portion of at least one other polypeptide, and dimeric forms of BPI variants. Examples of such hybrid fusion proteins and dimeric forms are described in co-owned, copending U.S. application Ser. No. 07/885,911 filed May 19, 1992, and a continuation-in-part application thereof, U.S. application Ser. No. 08/064,693 filed May 19, 1993 and corresponding International Publication No. WO 93/23434 (PCT/US93/04754), which are all incorporated herein by reference and include hybrid fusion proteins comprising, at the amino-terminal end, a BPI protein or a biologically active fragment thereof and, at the carboxy-terminal end, at least one constant domain of an immunoglobulin heavy chain or allelic variant thereof. [0031] Biologically active analogs of BPI (BPI analogs) include but are not limited to BPI protein products wherein one or more amino acid residues have been replaced by a different amino acid. For example, U.S. Pat. No. 5,420,019 and corresponding International Publication No. WO 94/18323 (PCT/US94/01235), all of which are incorporated herein by reference, discloses polypeptide analogs of BPI and BPI fragments wherein a cysteine residue is replaced by a different amino acid. A stable BPI protein product described by this application is the expression product of DNA encoding from amino acid 1 to approximately 193 or 199 of the N-terminal amino acids of BPI holoprotein, but wherein the cysteine at residue number 132 is substituted with alanine and is designated rBPI21[Delta]cys or rBPI21. Production of this N-terminal analog of BPI, rBPI21, has been described in Horwitz et al., Protein Expression Purification, 8:28-40 (1996). Other examples include dimeric forms of BPI analogs; e.g. U.S. Pat. No. 5,447,913 and corresponding International Publication No. WO 95/24209 (PCT/US95/03125), all of which are incorporated herein by reference. [0032] Other BPI protein products useful according to the methods of the invention are peptides derived from or based on BPI produced by recombinant or synthetic means (BPI-derived peptides), such as those described in International Publication No. WO 95/19372 (PCT/US94/10427), which corresponds to U.S. application Ser. No. 08/306,473, filed Sep. 15, 1994, and International Publication No. WO94/20532 (PCT/US94/02465), which corresponds to U.S. application Ser. No. 08/209,762, filed Mar. 11, 1994, which is a continuation-in-part of U.S. application Ser. No. 08/183,222, filed Jan. 14, 1994, which is a continuation-in-part of U.S. application Ser. No. 08/093,202 filed Jul. 15, 1993 (corresponding to International Publication No. WO 94/20128 (PCT/US94/02401)), which is a continuation-in-part of U.S. application Ser. No. 08/030,644 filed Mar. 12, 1993, the disclosures of all of which are incorporated herein by reference. [0033] As used herein, an "N-terminal BPI protein product" as differentiated from a "BPI protein product" includes natural, synthetic, and recombinant biologically active N-terminal polypeptide fragments of BPI protein having a molecular weight of about 25 kd or less; biologically active polypeptide analogs of these N-terminal BPI fragments, including cysteine-substituted analogs; biologically active polypeptide variants comprising such N-terminal BPI fragments or analogs thereof, including hybrid fusion proteins and dimers; and peptides derived from or based on N-terminal BPI protein having a molecular weight of about 25 kd or less (BPI-derived peptides). [0034] Presently preferred BPI protein products include recombinantly-produced N-terminal fragments of BPI, especially those having a molecular weight of approximately between 20 to 25 kD such as rBPI21 or rBPI23, or dimeric forms of these N-terminal fragments (e.g., rBPI42 dimer). Preferred N-terminal dimeric products include dimeric BPI protein products wherein the monomers are N-terminal BPI fragments having the N-terminal residues from about 1 to 175 to about 1 to 199 of BPI holoprotein. A particularly preferred N-terminal dimeric product is the dimeric form of the BPI fragment having N-terminal residues 1 through 193, designated rBPI42 dimer. Additionally, preferred N-terminal BPI protein products include rBPI and BPI-derived peptides. [0035] The administration of N-terminal BPI protein products is preferably accomplished with a pharmaceutical composition comprising an N-terminal BPI protein product and a pharmaceutically acceptable diluent, adjuvant, or carrier. The N-terminal BPI protein product may be administered without or in conjunction with known surfactants, other chemotherapeutic agents or additional known anti-chlamydial agents. A stable pharmaceutical composition containing BPI protein products (e.g., rBPI23) comprises the BPI protein product at a concentration of 1 mg/ml in citrate buffered saline (5 or 20 mM citrate, 150 mM NaCl, pH 5.0) comprising 0.1% by weight of poloxamer 188 (Pluronic F-68, BASF Wyandotte, Parsippany, N.J.) and 0.002% by weight of polysorbate 80 (Tween 80, ICI Americas Inc., Wilmington, Del.). Another stable pharmaceutical composition containing BPI protein products (e.g., rBPI21) comprises the BPI protein product at a concentration of 2 mg/ml in 5 mM citrate, 150 mM NaCl, 0.2% poloxamer 188 and 0.002% polysorbate 80. Such preferred combinations are described in U.S. Pat. No. 5,488,034 and corresponding International Publication No. WO 94/17819 (PCT/US94/01239), the disclosures of all of which are incorporated herein by reference. As described in U.S. application Ser. No. 08/586,133 filed Jan. 12, 1996, which is in turn a continuation-in-part of U.S. application Ser. No. 08/530,599 filed Sep. 19, 1995, which is in turn a continuation-in-part of U.S. application Ser. No. 08/372,104 filed Jan. 13, 1995, and corresponding International Publication No. WO96/21436 (PCT/US96/01095), all of which are incorporated herein by reference, other poloxamer formulations of BPI protein products |