SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Biotech / Medical : Kosan BioSciences -- KOSN

 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext  
To: Biomaven who wrote (384)12/4/2003 10:02:03 AM
From: tuck  Read Replies (1) of 933
 
Meawhile, KOSN working on its own ways to tweak e. coli for polyketides . . .

>>Biochemistry. 2003 Dec 9;42(48):14342-8.

6-Deoxyerythronolide B Analogue Production in Escherichia coli through Metabolic Pathway Engineering.

Kennedy J, Murli S, Kealey JT.

Kosan Biosciences, Inc., 3832 Bay Center Place, Hayward, California 94545.

The erythromycin precursor polyketide 6-deoxyerythronolide B (6-dEB) is produced from one propionyl-CoA starter unit and six (2S)-methylmalonyl-CoA extender units. In vitro studies have previously demonstrated that the loading module of 6-deoxyerythronolide B synthase (DEBS) exhibits relaxed substrate specificity and is able to accept butyryl-CoA, leading to the production of polyketides with butyrate starter units. We have shown that we can produce butyryl-CoA at levels of up to 50% of the total CoA pool in Escherichia coli cells that overexpress the acetoacetyl-CoA:acetyl-CoA transferase, AtoAD (EC 2.8.3.8), in media supplemented with butyrate. The DEBS polyketide synthase (PKS) used butyryl-CoA and methylmalonyl-CoA supplied in vivo by the AtoAD and methylmalonyl-CoA mutase pathways, respectively, to produce 15-methyl-6-dEB. Priming DEBS with endogenous butyryl-CoA affords an alternative and more direct route to 15-Me-6-dEB than that provided by the chemobiosynthesis method [Jacobsen, J. R., et al. (1997) Science 277, 367-369], which relies on priming a mutant DEBS with an exogenously fed diketide thioester. The approach described here demonstrates the utility of metabolic engineering in E. coli to introduce precursor pathways for the production of novel polyketides.<<

Cheers, Tuck
Report TOU ViolationShare This Post
 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext