SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Biotech / Medical : Millennium Pharmaceuticals, Inc. (MLNM)

 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext  
From: Icebrg12/18/2005 8:51:39 AM
   of 3044
 
Bortezomib Inhibits PKR-Like Endoplasmic Reticulum (ER) Kinase and Induces Apoptosis via ER Stress in Human Pancreatic Cancer Cells.

Cancer Res. 2005 Dec 15;65(24):11510-11519.

Nawrocki ST, Carew JS, Dunner K Jr, Boise LH, Chiao PJ, Huang P, Abbruzzese JL, McConkey DJ.

Departments of Cancer Biology, Molecular Pathology, Surgical Oncology, and Gastrointestinal Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas and Department of Microbiology and Immunology, Sylvester Cancer Center, University of Miami School of Medicine, Miami, Florida.

Bortezomib (Velcade, formerly known as PS-341) is a boronic acid dipeptide derivative that is a selective and potent inhibitor of the proteasome. We hypothesized that proteasome inhibition would lead to an accumulation of misfolded proteins in the cell resulting in endoplasmic reticulum (ER) stress. The ability of bortezomib to induce ER stress and the unfolded protein response was investigated in a human pancreatic cancer cell line, L3.6pl. Bortezomib increased expression of ER stress markers, CHOP and BiP, but inhibited PKR-like ER kinase and subsequent phosphorylation of eukaryotic initiation factor 2alpha (eif2alpha), both of which are key events in translational suppression. These effects resulted in an accumulation of ubiquitylated proteins leading to protein aggregation and proteotoxicity. Peptide inhibitor or small interfering RNA targeting ER-resident caspase-4 blocked DNA fragmentation, establishing a central role for caspase-4 in bortezomib-induced cell death. The translation inhibitor cycloheximide abrogated bortezomib-induced protein aggregation, caspase-4 processing, and all other characteristics of apoptosis. Because malignant cells have higher protein synthesis rates than normal cells, they may be more prone to protein aggregation and proteotoxicity and possess increased sensitivity to bortezomib-induced apoptosis. Taken together, the results show that bortezomib induces a unique type of ER stress compared with other ER stress agents characterized by an absence of eif2alpha phosphorylation, ubiquitylated protein accumulation, and proteotoxicity.

Bortezomib sensitizes pancreatic cancer cells to endoplasmic reticulum stress-mediated apoptosis.

Cancer Res. 2005 Dec 15;65(24):11658-66.

Nawrocki ST, Carew JS, Pino MS, Highshaw RA, Dunner K Jr, Huang P, Abbruzzese JL, McConkey DJ.

Departments of Cancer Biology, Molecular Pathology, Gastrointestinal Medical Oncology, and Urology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas and Division of Medical Oncology "A," Regina Elena Cancer Institute, Rome, Italy.

Bortezomib (PS-341, Velcade) is a potent and selective inhibitor of the proteasome that is currently under investigation for the treatment of solid malignancies. We have shown previously that bortezomib has activity in pancreatic cancer models and that the drug induces endoplasmic reticulum (ER) stress but also suppresses the unfolded protein response (UPR). Because the UPR is an important cytoprotective mechanism, we hypothesized that bortezomib would sensitize pancreatic cancer cells to ER stress-mediated apoptosis. Here, we show that bortezomib promotes apoptosis triggered by classic ER stress inducers (tunicamycin and thapsigargin) via a c-Jun NH(2)-terminal kinase (JNK)-dependent mechanism. We also show that cisplatin stimulates ER stress and interacts with bortezomib to increase ER dilation, intracellular Ca(2+) levels, and cell death. Importantly, combined therapy with bortezomib plus cisplatin induced JNK activation and apoptosis in orthotopic pancreatic tumors resulting in a reduction in tumor burden. Taken together, our data establish that bortezomib sensitizes pancreatic cancer cells to ER stress-induced apoptosis and show that bortezomib strongly enhances the anticancer activity of cisplatin.
Report TOU ViolationShare This Post
 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext