SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Biotech / Medical : Kosan BioSciences -- KOSN

 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext  
From: Icebrg12/22/2005 10:30:23 AM
  Read Replies (1) of 933
 
Heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin potentiates the radiation response of tumor cells grown as monolayer cultures and spheroids by inducing apoptosis.

Cancer Sci. 2005 Dec;96(12):911-7.

Machida H, Nakajima S, Shikano N, Nishio J, Okada S, Asayama M, Shirai M, Kubota N.

Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Amimachi, Inashiki-gun, Ibaraki 300-0394, Japan.

Activation of the PI3K-Akt pathway is known to induce tumor radioresistance. In the current study, we examined the ability of 17AAG, which decreases the levels of Hsp90 client proteins including components of the PI3K-Akt pathway, to sensitize radioresistant human squamous cell carcinoma cells to X-irradiation. Human squamous cell carcinoma cell lines (SQ20B, SCC61 and SCC13) were incubated for 16 h at 37 degrees C in medium containing 17AAG. Radiation sensitivity was determined by clonogenic assays, and protein levels were examined by western blotting. Apoptosis was determined in monolayer cells by AO/EB double staining and in spheroids using the TdT-mediated dUTP nick end labeling assay. 17AAG (0.2 microM) enhanced the radiosensitivity more effectively in radioresistant SQ20B and SCC13 cells than in radiosensitive SCC61 cells. However, in all three cell lines, 17AAG increased radiation-induced apoptosis by reducing the expression of EGFR and ErbB-2 and inhibiting the phosphorylation of Akt. Furthermore, 17AAG (1 microM) sensitized SQ20B spheroids to radiation, and inhibition of Akt activation by 17AAG increased radiation-induced apoptosis in spheroids. The findings suggest that 17AAG effectively sensitizes radioresistant cells to radiation by inhibiting the PI3K-Akt pathway. Targeting the PI3K-Akt pathway with 17AAG could be a useful strategy for radiosensitization of carcinomas.
Report TOU ViolationShare This Post
 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext