SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Biotech / Medical : Millennium Pharmaceuticals, Inc. (MLNM)

 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext  
To: tuck who wrote (2595)1/8/2006 5:19:26 PM
From: tuck   of 3044
 
[MOA of Velcade in bone marrow antiangiogenesis]

>>Cancer Res. 2006 Jan 1;66(1):184-91.

Bortezomib Mediates Antiangiogenesis in Multiple Myeloma via Direct and Indirect Effects on Endothelial Cells.

Roccaro AM, Hideshima T, Raje N, Kumar S, Ishitsuka K, Yasui H, Shiraishi N, Ribatti D, Nico B, Vacca A, Dammacco F, Richardson PG, Anderson KC.

Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.

Bone marrow angiogenesis plays an important role in the pathogenesis and progression in multiple myeloma. Recent studies have shown that proteasome inhibitor bortezomib (Velcade, formerly PS-341) can overcome conventional drug resistance in vitro and in vivo; however, its antiangiogenic activity in the bone marrow milieu has not yet been defined.In the present study, we examined the effects of bortezomib on the angiogenic phenotype of multiple myeloma patient-derived endothelial cells (MMEC). At clinically achievable concentrations, bortezomib inhibited the proliferation of MMECs and human umbilical vein endothelial cells in a dose-dependent and time-dependent manner. In functional assays of angiogenesis, including chemotaxis, adhesion to fibronectin, capillary formation on Matrigel, and chick embryo chorioallantoic membrane assay, bortezomib induced a dose-dependent inhibition of angiogenesis. Importantly, binding of MM.1S cells to MMECs triggered multiple myeloma cell proliferation, which was also abrogated by bortezomib in a dose-dependent fashion. Bortezomib triggered a dose-dependent inhibition of vascular endothelial growth factor (VEGF) and interleukin-6 (IL-6) secretion by the MMECs, and reverse transcriptase-PCR confirmed drug-related down-regulation of VEGF, IL-6, insulin-like growth factor-I, Angiopoietin 1 (Ang1), and Ang2 transcription. These data, therefore, delineate the mechanisms of the antiangiogenic effects of bortezomib on multiple myeloma cells in the bone marrow milieu.<<

Cheers, Tuck
Report TOU ViolationShare This Post
 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext