SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Biotech / Medical : Kosan BioSciences -- KOSN

 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext  
From: Icebrg10/14/2006 3:15:08 AM
   of 933
 
[Meanwhile, back in the lab they are still sort of struggling].
Precursor-directed biosynthesis of 6-deoxyerythronolide B analogues is improved by removal of the initial catalytic sites of the polyketide synthase.

J Ind Microbiol Biotechnol. 2006 Oct 11

Ward SL, Desai RP, Hu Z, Gramajo H, Katz L.

Kosan Biosciences Inc., 3832 Bay Center Place, Hayward, CA, 94545, USA, ward@kosan.com.

Precursor-directed biosynthesis has been shown to be a powerful tool for the production of polyketide analogues that would be difficult or cost prohibitive to produce from medicinal chemistry efforts alone. It has been most extensively demonstrated using a KS1 null mutation (KS1(0)) to block the first round of condensation in the biosynthesis of the erythromycin polyketide synthase (DEBS) for the production of analogues of its aglycone, 6-deoxyerythronolide B (6-dEB). Here we show that removing the DEBS loading domain and first module (mod1Delta), rather than using the KS1(0) system, can lead to an increase in the utilization of some chemical precursors and production of 6-dEB analogues (R-6dEB) in both Streptomyces coelicolor and Saccharopolyspora erythraea. While the difference in utilization of the precursor was diketide specific, in strains fed (2R*, 3S*)-5-fluoro-3-hydroxy-2-methylpentanoate N-propionylcysteamine thioester, twofold increases in both utilization of the diketide and 15-fluoro-6dEB (15F-6dEB) production were observed in S. coelicolor, and S. erythraea exhibited a tenfold increase in production of 15-fluoro-erythromycin when utilizing the mod1Delta rather than the KS1(0) system.
Report TOU ViolationShare This Post
 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext