SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Politics : Foreign Affairs Discussion Group

 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext  
To: Dayuhan who wrote (217852)2/12/2007 7:37:18 AM
From: jttmab  Read Replies (1) of 281500
 
Unfortunately, the design of the project was premised on the notion that water could be made to flow uphill.

Not a technological barrier. The Romans managed it...

"Roman aqueducts were extremely sophisticated constructions. They were built to remarkably fine tolerances, and of a technological standard that had a gradient of only 34 cm per km (3.4:10,000), descending only 17 m vertically in its entire length of 50 km (31 miles). Powered entirely by gravity, they transported very large amounts of water very efficiently (the Pont du Gard carried 20,000 cubic meters — nearly 6 million gallons — a day and the combined aqueducts of the city of Rome supplied around 1 million cubic meters (300 million gallons) a day (an accomplishment not equalled until the late 19th century and represents a value 25% larger than the present water supply of the city of Bangalore, with a population of 6 million). Sometimes, where depressions deeper than 50 m had to be crossed, gravity pressurized pipelines called inverted siphons were used to force water uphill (although they almost always used venter bridges as well). Modern hydraulic engineers use similar techniques to enable sewers and water pipes to cross depressions."

en.wikipedia.org
Report TOU ViolationShare This Post
 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext