SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Politics : Rat's Nest - Chronicles of Collapse

 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext  
To: Wharf Rat who wrote (5659)3/21/2007 11:43:45 AM
From: Wharf Rat  Read Replies (1) of 24213
 
Uranium Depletion and Nuclear Power: Are We at Peak Uranium?
Posted by Prof. Goose on March 21, 2007 - 11:00am


This is a guest post by Miquel Torres.

A recent post by Martin Sevior has invigorated the nuclear energy debate causing over 240 comments with the most diverse opinions. I would like to further pursue this debate, as the question of whether nuclear power can provide a big part of the worlds energy needs is extremely important in the Peak Oil debate, because it is the only alternative energy source beside coal providing the type of electricity production necessary for the current electric grid model: big, base-load capable power plants. If that role is fulfilled, the current electricity production system can continue beyond Peak Oil, and even expand to provide the energy necessary for electrified transport. If it falls short, a new energy model is needed.

To anyone seeking the truth about the issues surrounding nuclear energy, the situation is extremely frustrating. There are two camps stating opposing claims. On the one hand, the environmentalists dislike everything nuclear, and on the other hand the nuclear industry paints an overly rosy picture where all problems are solvable, or non-issues at all. Whom should we believe?

Because Martin Sevior has portrayed the view of the nuclear industry, this post will explain what the other camp has to say. While I could address his post point by point, it would result in a very large article that nobody would read. So I have opted to first answer just one point, Uranium production, which I chose both because it is most similar to the PO depletion theme, readers should be familiar with some of its challenges, and because a new study sheds new light on it.

The biggest issue I have with nuclear energy proponents, including some members of TOD community, is that they just repeat what the nuclear industry sales men say. A good example is the post by Martin Sevior. It repeats their arguments without a shadow of doubt nor criticism. The same highly educated, Peak Oil literate individuals who know about OPEC resource mis-reporting, and can tell the difference between KSA reserves and Canada's, the difference between light crude oil and tar sands and know who Yergin and CERA are, believe all the arguments of the nuclear industry word by word. Why that is so, I do not know.

TODers should know that even though Canada now has greater stated reserves than KSA, tar sands will never reach OPEC production volumes. Reserves, and R/P ratio is not the same as a production profile, which produces a peak well before complete exhaustion. Uranium, like any other resource, can't be mined at any desired rate, nor every last drop or ounce of the resource can be mined. No matter the technology, at some point it is just not worth it to mine lower grade ores. While energy balance analysis are complicated and a discussion about it would only bring controversy, another way of putting it is more easily grasped. For any mined ore, the lower the grade, the higher the material throughput you need to process. There is always a limit. And despite what the nuclear industry might tell you, for Uranium too. The materials throughput (not unrelated to the energy needed) is inversely proportional to the ore grade for any mined material: To extract 1 kg of uranium out of 1% ore containing material needs the processing of 100 kg. Extracting the same amount from 0.01% ore needs the processing of 10,000 kg. You can easily see that even if, for the sake of the argument we assume that the EROEI of nuclear energy for all ore grades is positive, there are physical limits to the production throughput Uranium production can ever reach. So what should be done is not just to list possible Uranium reserves, but also to analyze the maximum throughput attainable by the mining industry. That is: The Uranium production profile for the world.

The recently formed Energy Working Group has recently published a paper titled URANIUM RESOURCES AND NUCLEAR ENERGY. I will now explain their work. All figures and quotations are taken from this paper.

About the Energy Watch Group
This is the first of a series of papers by the Energy Watch Group which are addressed to investigate future energy supply and demand patterns. The Energy Watch Group consists of independent scientists and experts who investigate sustainable concepts for global energy supply. The group is initiated by the German member of parliament Hans-Josef Fell.
SUMMARY
Any forecast of the development of nuclear power in the next 25 years has to concentrate on two aspects, the supply of uranium and the addition of new reactor capacity. At least within this time horizon, neither nuclear breeding reactors nor thorium reactors will play a significant role because of the long lead times for their development and market penetration. This assessment results in the conclusion that in the short term, until about 2015, the long lead times of new and the decommissioning of ageing reactors perform the barrier for fast extension, and after about 2020 severe uranium supply shortages become likely which, again will limit the extension of nuclear energy.

theoildrum.com
Report TOU ViolationShare This Post
 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext