SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Biotech / Medical : Biotech News

 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext  
From: Doc Bones9/6/2008 4:15:16 AM
   of 7143
 
Antibacterial Cannabinoids from Cannabis sativa: A Structure-Activity Study

Citation J. Nat. Prod., 71 (8), 1427–1430, 2008. 10.1021/np8002673
Web Release Date: August 6, 2008
Copyright © 2008 American Chemical Society

Giovanni Appendino,*†‡ Simon Gibbons,* Anna Giana,†‡ Alberto Pagani,†‡ Gianpaolo Grassi,§ Michael Stavri, Eileen Smith, and M. Mukhlesur Rahman

Dipartimento di Scienze Chimiche, Alimentari, Farmaceutiche e Farmacologiche, Universita` del Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy, Consorzio per lo Studio dei Metaboliti Secondari (CSMS), Viale S. Ignazio 13, 09123 Cagliari, Italy, Centre for Pharmacognosy and Phytotherapy, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, U.K., and CRA-CIN Centro di Ricerca per le Colture Industriali, Sede distaccata di Rovigo, Via Amendola 82, 45100 Rovigo, Italy
Received May 1, 2008



Abstract:

Marijuana (Cannabis sativa) has long been known to contain antibacterial cannabinoids, whose potential to address antibiotic resistance has not yet been investigated. All five major cannabinoids (cannabidiol (1b), cannabichromene (2), cannabigerol (3b), 9-tetrahydrocannabinol (4b), and cannabinol (5)) showed potent activity against a variety of methicillin-resistant Staphylococcus aureus (MRSA) strains of current clinical relevance. Activity was remarkably tolerant to the nature of the prenyl moiety, to its relative position compared to the n-pentyl moiety (abnormal cannabinoids), and to carboxylation of the resorcinyl moiety (pre-cannabinoids). Conversely, methylation and acetylation of the phenolic hydroxyls, esterification of the carboxylic group of pre-cannabinoids, and introduction of a second prenyl moiety were all detrimental for antibacterial activity. Taken together, these observations suggest that the prenyl moiety of cannabinoids serves mainly as a modulator of lipid affinity for the olivetol core, a per se poorly active antibacterial pharmacophore, while their high potency definitely suggests a specific, but yet elusive, mechanism of activity.

pubs.acs.org
Report TOU ViolationShare This Post
 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext