[Chinese hamster ovary cells can produce galactose-a-1,3-galactose antigens on proteins]
* Carlos J Bosques, * Brian E Collins, * James W Meador III, * Hetal Sarvaiya, * Jennifer L Murphy, * Guy DelloRusso, * Dorota A Bulik, * I-Hsuan Hsu, * Nathaniel Washburn, * Sandra F Sipsey, * James R Myette, * Rahul Raman, * Zachary Shriver, * Ram Sasisekharan * & Ganesh Venkataraman
* Affiliations * Corresponding author
Journal name: Nature Biotechnology Volume: 28, Pages: 1153–1156 Year published: (2010) DOI: doi:10.1038/nbt1110-1153
Published online 05 November 2010
To the Editor:
Chinese hamster ovary (CHO) cells are widely used for the manufacture of biotherapeutics, in part because of their ability to produce proteins with desirable properties, including 'human-like' glycosylation profiles. For biotherapeutics production, control of glycosylation is critical because it has a profound effect on protein function, including half-life and efficacy. Additionally, specific glycan structures may adversely affect their safety profile. For example, the terminal galactose-a-1,3-galactose (a-Gal) antigen can react with circulating anti a-Gal antibodies present in most individuals1. It is now understood that murine cell lines, such as SP2 or NSO, typical manufacturing cell lines for biotherapeutics, contain the necessary biosynthetic machinery to produce proteins containing a-Gal epitopes2, 3, 4. Furthermore, the majority of adverse clinical events associated with an induced IgE-mediated anaphylaxis response in patients treated with the commercial antibody Erbitux (cetuximab) manufactured in a murine myeloma cell line have been attributed to the presence of the a-Gal moiety4. Even so, it is generally accepted that CHO cells lack the biosynthetic machinery to synthesize glycoproteins with a-Gal antigens5. Contrary to this assumption, we report here the identification of the CHO ortholog of N-acetyllactosaminide 3-a-galactosyltransferase-1, which is responsible for the synthesis of the a-Gal epitope. We find that the enzyme product of this CHO gene is active and that glycosylated protein products produced in CHO contain the signature a-Gal antigen because of the action of this enzyme. Furthermore, characterizing the commercial therapeutic protein abatacept (Orencia) manufactured in CHO cell lines, we also identified the presence of a-Gal. Finally, we find that the presence of the a-Gal epitope likely arises during clonal selection because different subclonal populations from the same parental cell line differ in their expression of this gene. Although the specific levels of a-Gal required to trigger anaphylaxis reactions are not known and are likely product specific, the fact that humans contain high levels of circulating anti-a-Gal antibodies suggests that minimizing (or at least controlling) the levels of these epitopes during biotherapeutics development may be beneficial to patients. Furthermore, the approaches described here to monitor a-Gal levels may prove useful in industry for the surveillance and control of a-Gal levels during protein manufacture.<<
This is pertinent to the FoB program, obviously.
nature.com
Registration required for the above, and $32 bucks for whole thing if you're not a subscriber.
Cheers, Tuck |