SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Strategies & Market Trends : Free Float Trading/ Portfolio Development/ Index Stategies

 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext  
From: dvdw©7/29/2011 8:23:29 AM
Read Replies (1) of 3821
 
Program description, and why we take a systems approach to discovery.
The Variable Time Shapes of Capital provides the baseline which guarantees, that fundamental movement of capital, as branches of economics, where outputs become both iterative and disruptive at the same time. Failing to have a systems viewpoint which is at once counterprogramming in its natural form, disables the ebb and flow regulation mechanisms which are informing investors about the complexity within the system. The description below eludes at the underlying movement toward nexus with the variables both emergent and in recession.

Many recent developments in the theory of quantum information have led to important insights and applications in condensed matter physics. For instance, the theory of entanglement has shed new light on the density matrix renormalisation and the real space renormalization numerical methods, culminating in a deeper understanding of the strengths of the methods and applications to a wider class of problems including critical systems and systems in more than one spatial dimension. Similarly, the theory of quantum error correction has led to new classes of theoretical models of interacting particles that exhibits topological order, an exotic phase of matter where excitation can have non-Abelian statistics. The study of information propagation in a system of interacting particles was used to prove the existence of an entanglement entropy area law in the ground state of systems with local interactions. The problem of finding ground states of a system composed of interacting particles was proven to be complete for the complexity class QMA, the quantum analogue of NP. These are just a few examples illustrating the connections between quantum information and condensed matter physics.

The purpose of this workshop will be to bring together some of the world’s leading experts in quantum information and condensed matter physics with interests in the connections between the two fields. This will represent a opportunity to deepen our understandings of the connections between these fields and to tackle important open questions such as the quantum analogue of the probabilistically checkable proof (PCP) theorem and the existence of self-correcting phases of matter.
Report TOU ViolationShare This Post
 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext