SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Biotech / Medical : Indications -- HIV

 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext  
From: tuck3/10/2013 2:16:45 PM
   of 155
 
>>Cytolytic nanoparticles attenuate HIV-1 infectivity Joshua L Hood, Andrew P Jallouk, Nancy Campbell, Lee Ratner, Samuel A Wickline Corresponding author name: Joshua L Hood
Corresponding author e-mail: jhood@dom.wustl.edu


Citation: Antiviral Therapy 2013; 19:95-103
doi: 10.3851/IMP2346


Date accepted: 16 August 2012
Date published online: 06 September 2012


Abstract Background: We investigated whether cytolytic melittin peptides could inhibit HIV-1 infectivity when carried in a nanoparticle construct that might be used as a topical vaginal virucide. Free melittin and melittin-loaded nanoparticles were prepared and compared for cytotoxicity and their ability to inhibit infectivity by CXCR4 and CCR5 tropic HIV-1 strains.

Methods: TZM-bl reporter cells expressing luciferase under the control of the HIV-1 promoter were incubated with HIV-1 NLHX (CXCR4) or HIV-1 NLYU2 (CCR5) viral strains and different doses of soluble CD4 (positive control) or free melittin to determine infectivity and viability. Melittin-loaded nanoparticles were formulated and different doses tested against VK2 vaginal epithelial cells to determine cell viability. Based on VK2 viability, melittin nanoparticles were tested for prevention of CXCR4 and CCR5 tropic HIV-1 infectivity and viability of TZM-bl reporter cells. Low-speed centrifugation was used to compare the ability of blank non-melittin nanoparticles and melittin nanoparticles to capture CCR5 tropic HIV-1.

Results: As expected, the soluble CD4 positive control inhibited CXCR4 (50% inhibitory concentration [IC50] 3.7 µg/ml) and CCR5 (IC50 0.03 µg/ml) tropic HIV-1 infectivity. Free melittin doses <2 µM were not cytotoxic and were highly effective in reducing HIV-1 infectivity for both CXCR4 and CCR5 strains in TZM-bl reporter cells, while VK2 vaginal cell viability was adversely affected at all free melittin doses tested. However, VK2 cell viability was not affected at any dose of melittin-loaded nanoparticles. Melittin nanoparticles safely and significantly decreased CXCR4 (IC50 2.4 µM and IC90 6.9 µM) and CCR5 (IC50 3.6 µM and IC90 11.4 µM) strain infectivity of TZM-bl reporter cells. Furthermore, melittin nanoparticles captured more HIV-1 than blank nanoparticles.

Conclusions: These data illustrate the first proof-of-concept for therapeutic and safe nanoparticle-mediated inhibition of HIV-1 infectivity. Future investigations appear warranted to explore the antiviral prophylactic potential of melittin nanoparticles to capture, disrupt and prevent initial infection with HIV-1 or potentially other enveloped viruses.<<

Melittin is the active ingredient in bee venom. Save the bees! This is saying HIV can be attacked directly, not just through replication, hence the emphasis on prophylaxis. Like a vaginal cream. Note that hornets and wasps have a somewhat different toxin.

Cheers, Tuck
Report TOU ViolationShare This Post
 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext