SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Politics : Evolution

 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext  
To: Brumar89 who wrote (50750)3/25/2014 9:00:13 PM
From: Brumar89  Read Replies (1) of 69300
 
DNA Can Discern Between Two Quantum States, Research Shows – June 2011
Excerpt: — DNA — can discern between quantum states known as spin. – The researchers fabricated self-assembling, single layers of DNA attached to a gold substrate. They then exposed the DNA to mixed groups of electrons with both directions of spin. Indeed, the team’s results surpassed expectations: The biological molecules reacted strongly with the electrons carrying one of those spins, and hardly at all with the others. The longer the molecule, the more efficient it was at choosing electrons with the desired spin, while single strands and damaged bits of DNA did not exhibit this property.
http://www.sciencedaily.com/releases/2011/03/110331104014.htm
.........
Physicists Discover Quantum Law of Protein Folding – February 22, 2011
Quantum mechanics finally explains why protein folding depends on temperature in such a strange way.
Excerpt: First, a little background on protein folding. Proteins are long chains of amino acids that become biologically active only when they fold into specific, highly complex shapes. The puzzle is how proteins do this so quickly when they have so many possible configurations to choose from.
To put this in perspective, a relatively small protein of only 100 amino acids can take some 10^100 different configurations. If it tried these shapes at the rate of 100 billion a second, it would take longer than the age of the universe to find the correct one. Just how these molecules do the job in nanoseconds, nobody knows.,,,
Their astonishing result is that this quantum transition model fits the folding curves of 15 different proteins and even explains the difference in folding and unfolding rates of the same proteins.
That’s a significant breakthrough. Luo and Lo’s equations amount to the first universal laws of protein folding. That’s the equivalent in biology to something like the thermodynamic laws in physics.
http://www.technologyreview.com/view/423087/physicists-discover-quantum-law-of-protein/

That quantum information is in fact ‘conserved’ is noted here,

Quantum no-hiding theorem experimentally confirmed for first time
Excerpt: In the classical world, information can be copied and deleted at will. In the quantum world, however, the conservation of quantum information means that information cannot be created nor destroyed. This concept stems from two fundamental theorems of quantum mechanics: the no-cloning theorem and the no-deleting theorem. A third and related theorem, called the no-hiding theorem, addresses information loss in the quantum world. According to the no-hiding theorem, if information is missing from one system (which may happen when the system interacts with the environment), then the information is simply residing somewhere else in the Universe; in other words, the missing information cannot be hidden in the correlations between a system and its environment.
- per Physorg

Quantum no-deleting theorem
Excerpt: A stronger version of the no-cloning theorem and the no-deleting theorem provide permanence to quantum information. To create a copy one must import the information from some part of the universe and to delete a state one needs to export it to another part of the universe where it will continue to exist.
- per Wikipedia
Report TOU ViolationShare This Post
 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext