The Synthetic Biology Era Is Here—How We Can Make the Most of It
We are entering an era of directed design in which we will expand the limited notion that biology is only the ‘study of life and living things’ and see biology as the ultimate distributed, manufacturing platform (as Stanford bioengineer, Drew Endy, often says). This new mode of manufacturing will offer us unrivaled personalization and functionality.
We’re already taking our first steps in this direction. Joule Unlimited has engineered bacteria to convert CO2 into fuels in a single-step, continuous process. Others are engineering yeast to produce artemisinin — a potent anti-malarial compound used by millions of people globally. Still other microbes are being reprogrammed to produce industrial ingredients, like those used in synthetic rubber.
If we look far enough, future bio-based industries will discard expensive, complicated industrial chemical syntheses that use high temperatures, high pressures and toxic catalysts in favor of cheaper, more resource-efficient and less toxic biochemical syntheses.
We will do these things, and then we will exceed them. Or at least, that’s one (perhaps shamelessly optimistic) version of the future. Alternate perspectives, both pessimistic and realistic, ought to be considered too. There are many opportunities here — billion-dollar companies to be built, billion-person problems to be solved, critical ethical debates to be discussed in public, and policy prescriptions to be scrutinized.
singularityhub.com
|