Graphene-based computer would be 1,000 times faster than silicon-based, use 100th the power
A future graphene-based transistor using spintronics could lead to tinier computers that are a thousand times faster and use a hundredth of the power of silicon-based computers.
The radical transistor concept, created by a team of researchers at Northwestern University, The University of Texas at Dallas, University of Illinois at Urbana-Champaign, and University of Central Florida, is explained this month in an open-access paper in the journal Nature Communications.
Transistors act as on and off switches. A series of transistors in different arrangements act as logic gates, allowing microprocessors to solve complex arithmetic and logic problems. But the speed of computer microprocessors that rely on silicon transistors has been relatively stagnant since around 2005, with clock speeds mostly in the 3 to 4 gigahertz range.
Clock speeds approaching the terahertz range
The researchers discovered that by applying a magnetic field to a graphene ribbon (created by unzipping a carbon nanotube), they could change the resistance of current flowing through the ribbon. The magnetic field — controlled by increasing or decreasing the current through adjacent carbon nanotubes — increased or decreased the flow of current.
A cascading series of graphene transistor-based logic circuits could produce a massive jump, with clock speeds approaching the terahertz range — a thousand times faster.* They would also be smaller and substantially more efficient, allowing device-makers to shrink technology and squeeze in more functionality, according to Ryan M. Gelfand, an assistant professor in The College of Optics & Photonics at the University of Central Florida.
kurzweilai.net
|