SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Strategies & Market Trends : 2026 TeoTwawKi ... 2032 Darkest Interregnum
GLD 399.01+0.1%Dec 19 4:00 PM EST

 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext  
To: TobagoJack who wrote (136105)10/16/2017 6:56:02 PM
From: Elroy Jetson1 Recommendation

Recommended By
Snowshoe

  Read Replies (1) of 218617
 
Researchers collected data from the kilonova in every part of the electromagnetic spectrum. In the early hours the explosion appeared blue and featureless — the light signature of a very young, very hot new celestial body. But unlike supernovas, which can linger in the sky for months, the explosion turned red and faded. —— news.nationalgeographic.com —— nature.com

By separating light from the collision into its component parts, scientists could distinguish the characteristic signals of heavy elements like silver and gold coalescing in the cooling cloud of material. Wedding rings and uranium bombs are elemental echoes of these merging neutron stars.

The observations confirmed theoretical models of what a kilonova might look like. For millennia the two dead stars circled each other at nearly the speed of light, shaking off gravitational waves, which in turn pulled them closer together. When the husks smashed together, dinosaurs still walked the planet. The beams of light and gravitational shock waves from stars' collision finally reached Earth in August.

The fact that the signals arrived so close together — just 1.7 seconds elapsed between the first gravitational wave detection and the arrival of the gamma ray burst — also proves one of Einstein's predictions: gravitational waves move at light speed.

“While I’m not surprised that Einstein is right," McEnery said, "it’s always nice to see him pass another test.”

Scientists don’t yet know what happened in the wake of the kilonova. Neutron stars are too faint to be seen from so far away, so researchers can’t tell if the merger produced one large neutron star, or if the bodies collapsed to form a black hole, which emits no light at all.

But after two months of analysis, the collaborators were ready to inform the world about what they have so far. Their results were announced Monday in more than a dozen papers in the journals Nature, Science and the Astrophysical Journal Letters.

The collaboration’s capstone paper in Astrophysical Journal Letters lists roughly 3,500 authors, approaching the record set in 2015 by 5,154 Large Hadron Collider physicists who estimated the mass of the Higgs boson. If gravitational wave research had already weakened the stereotype of a lone astronomer genius, the dawn of multi-messenger astrophysics dealt it a fatal blow.

“From this point onward, the more we want to know, the more we need to work together.” said Laura Cadonati, an astrophysicist at the Georgia Institute of Technology and LIGO representative.
Report TOU ViolationShare This Post
 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext