EUV Lithography Finally Ready for Chip Manufacturing This long-awaited technology will extend the life of Moore’s Law
spectrum.ieee.org
“A fab is like an iceberg,” someone tells me. I can’t tell who because we’re all covered head to toe in clean-room garb. A tour of GlobalFoundries’ Fab 8 in Malta, N.Y., certainly reinforces that analogy: We’ve just come up from the “sub-fab,” the 10 meters of vertical space under the floor, where pipes and wires snake down from each semiconductor-manufacturing tool above to a set of automated chemical handlers, water analyzers, power conditioners, and—in the case of the unit I’ve come to see—kilowatt-class lasers.
The laser system takes up 15 to 20 square meters out of perhaps 80 square meters of the floor space required for a single machine. About halfway through a six-week assembly process of mind-bending complexity, the equipment making up the tip of the iceberg is a house-size agglomeration of shiny metal tubes, opaque chambers, and wiring. A half dozen bunny-suited technicians are moving around the behemoth, probing and connecting things in a carefully choreographed procedure.
The giant machine garnering all this attention is an extreme ultraviolet lithography tool. For more than a decade, the semiconductor-manufacturing industry has been alternately hoping EUV can save Moore’s Law and despairing that the technology will never arrive. But it’s finally here, and none too soon.
Samsung was the first to claim it will be ready to produce chips for customers using EUV tools, saying that will happen in the second half of 2018. But its competitors GlobalFoundries, Taiwan Semiconductor Manufacturing Co. (TSMC), and Intel are clearly on track to do the same within a quarter or two.
continues at spectrum.ieee.org |