SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Technology Stocks : Investing in Exponential Growth

 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext  
From: Paul H. Christiansen1/17/2018 3:17:12 PM
   of 1084
 
What is fog computing? Connecting the cloud to things



Fog computing is the concept of a network fabric that stretches from the outer edges of where data is created to where it will eventually be stored, whether that's in the cloud or in a customer’s data center.

Fog is another layer of a distributed network environment and is closely associated with cloud computing and the internet of things (IoT). Public infrastructure as a service (IaaS) cloud vendors can be thought of as a high-level, global endpoint for data; the edge of the network is where data from IoT devices is created.

Fog computing is the idea of a distributed network that connects these two environments. “Fog provides the missing link for what data needs to be pushed to the cloud, and what can be analyzed locally, at the edge,” explains Mung Chiang, dean of Purdue University’s College of Engineering and one of the nation’s top researchers on fog and edge computing.

According to the OpenFog Consortium, a group of vendors and research organizations advocating for the advancement of standards in this technology, fog computing is “a system-level horizontal architecture that distributes resources and services of computing, storage, control and networking anywhere along the continuum from Cloud to Things.”

Fundamentally, the development of fog computing frameworks gives organizations more choices for processing data wherever it is most appropriate to do so. For some applications, data may need to be processed as quickly as possible – for example, in a manufacturing use case where connected machines need to be able to respond to an incident as soon as possible.

Fog computing can create low-latency network connections between devices and analytics endpoints. This architecture in turn reduces the amount of bandwidth needed compared to if that data had to be sent all the way back to a data center or cloud for processing. It can also be used in scenarios where there is no bandwidth connection to send data, so it must be processed close to where it is created. As an added benefit, users can place security features in a fog network, from segmented network traffic to virtual firewalls to protect it.

Select here to read the entire article.

Report TOU ViolationShare This Post
 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext