SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Technology Stocks : Investing in Exponential Growth

 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext  
From: Paul H. Christiansen2/18/2018 1:05:05 PM
   of 1084
 
Inference is the Hammer That Breaks the Datacenter

Two important changes to the datacenter are happening in the same year—one on the hardware side, another in software. And together, they create a force big enough to blow away the clouds, at least over the long haul.

As we covered this year from a datacentric (and even supercomputing) point of view, 2018 is the time for Arm to shine. With a bevy of inroads to commercial markets at the high-end all the way down to the micro-device level, the architecture presents a genuine challenge to the processor establishment. And now, coupled with the biggest trend since cloud or big data (which ironically could be replaced in various ways by this contender) machine learning comes steamrolling along, changing the way we could think about the final product of training—inference.

Deep learning training has a clear winner on the hardware side. There is little doubt the GPU reigns supreme here and it has in fact bolstered the various cloud providers to rush to the latest GPU offerings to serve up for both high performance computing and training needs. Google’s TPU and the other architectures have a role here too, but for the mainstream trainers (if there are enough of them yet to classify a middle ground) are Nvidia GPU-centric.

The story for inference is not so clean and easy. This is for a few different reasons, including the big one—the compute needed for training is dramatically different than what inference requires. Ultra-low power, reduced precision are key characteristics and accordingly, a host of existing device types have been moved in to fill demand and get a new breath of life; from DSPs to FPGAs to very small custom ASICs that once only had very domain specific markets to fill—all of these (and little GPUs too) have a chance.

Read More -The Next Platform
Report TOU ViolationShare This Post
 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext