Ensco Rowan to change their name to Valaris Plc.
Well they've trashed their once good name.
Not sure what to say about the stock up on a new name.
All part of a washout process.
Very discouraging is the time to buy cheap - you just have to hope it survives in the long run.
Here is a lengthy but supportive view on why fossil fuels will not only be around , but grow with the emerging market growth.
media4.manhattan-institute.org
Bottom line wind and renewables are good and expensive to store and build infrastructure for.
Oil and natural gas are here for the long run and include big growth.
When the world’s poorest 4 billion people increase their energy use to just 15% of the per-capita level of developed economies, global energy consumption will rise by the equivalent of adding an entire United States’ worth of demand.92 In the face of such projections, there are proposals that governments should constrain demand, and even ban certain energy-consuming behaviors. One academic article proposed that the “sale of energy-hungry versions of a device or an application could be forbidden on the market, and the limitations could become gradually stricter from year to year, to stimulate energy-saving product lines.” 93 Others have offered proposals to “reduce dependency on energy” by restricting the sizes of infrastructures or requiring the use of mass transit or car pools.94 The issue here is not only that poorer people will inevitably want to—and will be able to—live more like wealthier people but that new inventions continually create new demands for energy. The invention of the aircraft means that every $1 billion in new jets produced leads to some $5 billion in aviation fuel consumed over two decades to operate them. Similarly, every $1 billion in data centers built will consume $7 billion in electricity over the same period.95 The world is buying both at the rate of about $100 billion a year.96 The inexorable march of technology progress for things that use energy creates the seductive idea that something radically new is also inevitable in ways to produce energy. But sometimes, the old or established technology is the optimal solution and nearly immune to disruption. We still use stone, bricks, and concrete, all of which date to antiquity. We do so because they’re optimal, not “old.” So are the wheel, water pipes, electric wires ... the list is long. Hydrocarbons are, so far, optimal ways to power most of what society needs and wants. More than a decade ago, Google focused its vaunted engineering talent on a project called “RE<C,” seeking to develop renewable energy cheaper than coal. After the project was canceled in 2014, Google’s lead engineers wrote: “Incremental improvements to existing [energy] technologies aren’t enough; we need something truly disruptive. … We don’t have the answers.” 97 Those engineers rediscovered the kinds of physics and scale realities highlighted in this paper. An energy revolution will come only from the pursuit of basic sciences. Or, as Bill Gates has phrased it, the challenge calls for scientific “miracles.”98 These will emerge from basic research, not from subsidies for yesterday’s technologies. The Internet didn’t emerge from subsidizing the dial-up phone, or the transistor from subsidizing vacuum tubes, or the automobile from subsidizing railroads. However, 95% of private-sector R&D spending and the majority of government R&D is directed at “development” and not basic research.99 If policymakers want a revolution in energy tech, the single most important action would be to radically refocus and expand support for basic scientific research. Hydrocarbons—oil, natural gas, and coal—are the world’s principal energy resource today and will continue to be so in the foreseeable future. Wind turbines, solar arrays, and batteries, meanwhile, constitute a small source of energy, and physics dictates that they will remain so. Meanwhile, there is simply no possibility that the world is undergoing—or can undergo—a near-term transition to a “new energy economy. |