SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Biotech / Medical : NNVC - NanoViricides, Inc.
NNVC 1.850-2.6%Nov 7 9:30 AM EST

 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext  
To: Straynut who wrote (12655)2/14/2020 10:11:45 PM
From: Straynut   of 12871
 
The Novel Coronavirus Pneumonia (“NCP”) Epidemic Subsequent to the reporting period, on January 30, 2020, the Company confirmed in a press release that it has undertaken an effort to develop a treatment for the novel 2019-nCoV coronavirus outbreak that appears to have started around November-December 2019 in Wuhan, China. The new 2019-nCoV is known to be closely related to the SARS-CoV of 2002-2003 epidemic. In fact it has been shown to use the same cell surface receptor as SARS-CoV, namely ACE2. The Company determined, based on molecular modeling screening that it had in its chemicals library ligands that could bind to SARS-CoV S1 spike protein at the same position where the S1 binds to the human receptor ACE2. It is a reasonable expectation that these relatively broad-spectrum ligands would also be able to bind the S1 spike protein of the NCP coronavirus in the same fashion. The Company intends to generate nanoviricides based on these ligands and test them in our own BSL2 virology lab facility against known available human pathogen coronaviruses, including those that use ACE2 as the cellular receptor. The Company has the capacity to produce several thousand doses of the potential drug at its cGMP-capable multi-purpose manufacturing facility in Shelton, CT. If this screening produces positive results, then the Company anticipates obtaining assistance from US government and international agencies for further testing and potential exploratory clinical use to combat the epidemic. The Company does not at present have any active collaborations with US or international agencies for this purpose. Even if the Company can develop a potential drug candidate, significant support and participation from US and international agencies would be required to make it available to patients, including for taking it through exploratory clinical trials. The outbreak was declared a global emergency by the WHO on the same date, January, 30th, 2020. Page 24



Background - The Nanoviricide® Platform Technology NanoViricides, Inc. is a globally leading company in the application of nanomedicine technologies to the complex issues of viral diseases. The nanoviricide® technology enables direct attacks at multiple points on a virus particle. It is believed that such attacks would lead to the virus particle becoming ineffective at infecting cells. Antibodies in contrast attack a virus particle at only a maximum of two attachment points per antibody. In addition, the nanoviricide technology also simultaneously enables attacking the rapid intracellular reproduction of the virus by incorporating one or more active pharmaceutical ingredients (APIs) within the core of the nanoviricide. The nanoviricide technology is the only technology in the world, to the best of our knowledge, that is capable of both (a) attacking extracellular virus, thereby breaking the reinfection cycle, and simultaneously (b) disrupting intracellular production of the virus, thereby enabling complete control of a virus infection. Our anti-viral therapeutics, that we call “nanoviricides®” are designed to appear to the virus like the native host cell surface to which it binds. Since these binding sites for a given virus do not change despite mutations and other changes in the virus, we believe that our drugs will be broad-spectrum, i.e. effective against most if not all strains, types, or subtypes, of a given virus, provided the virus-binding portion of the nanoviricide is engineered appropriately. Viruses would not be able to escape the nanoviricide by viral mutations since they continue to bind to the same cellular receptor and thus would be captured by the nanoviricide. Virus escape by mutations is a major problem in the treatment of viral diseases using conventional drugs. The Company develops its class of drugs, that we call nanoviricides®, using a platform technology. This approach enables rapid development of new drugs against a number of different viruses. A nanoviricide is a “biomimetic” - it is designed to “look like” the cell surface to the virus. To accomplish this, we have developed a polymeric micelle structure composed of PEG and fatty acids that is designed to create a surface like the cell membrane, with the fatty acids going inside of the micelle. On this surface, we chemically attach, at regular intervals, virus-binding ligands. The virus is believed to be attracted to the nanomicelle by these ligands, and thereby binds to the nanoviricide using the same glycoproteins that it uses for binding to a host cell. Upon such binding, a “lipid mixing” interaction between the lipid envelope of the virus and the nanomicelle is thought to take place, leading to the virus attempting to enter the nanomicelle. We believe many different kinds of viruses are likely to get destroyed in this process. We engineer the ligands to “mimic” the same site on the cell surface protein to which the virus binds. These sites do not change no matter how much a given virus mutates. Thus, we believe that if a virus so mutates that it is not attacked by our nanoviricide, then it also would not bind to the human host cell receptor effectively and therefore would be substantially reduced in its pathogenicity. Our success at developing broad-spectrum nanoviricides depends upon how successfully we can design decoys of the cell surface receptor as ligands, among other factors. NanoViricides, Inc. is one of a few bio-pharma companies that has all the capabilities needed from research and development to marketable drug manufacture in the small quantities needed for human clinical trials. At our campus at 1 Controls Drive, Shelton, CT, we possess state of the art nanomedicines characterization facilities that we believe enable us to perform pre-IND nanomedicine analysis and characterization studies of any of our various drug candidates in house. In addition, we believe we now have the ability to scale up production of any of our drug candidates, and implement state of the art in-process controls as well as post-process analysis controls in order to establish robust c-GMP-capable production methodologies. We also have a Biological Safety Level 2 (BSL2) certified virological cell culture lab at this campus. We are able to perform initial cell culture based screening of large numbers of drug candidates for effectiveness and safety against certain of the viruses that we have targeted for drug development. This capability boosts our drug development capabilities significantly. Other than this limited initial screening, all of the biological testing and characterization of our drug candidates continues to be performed by external academic or institutional collaborators and contract research organizations (CRO). In particular, all of the animal studies are performed by our collaborators and CROs.
Page 32




seekingalpha.com


Report TOU ViolationShare This Post
 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext