SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Gold/Mining/Energy : Mining News of Note

 Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext  
To: LoneClone who wrote (164544)3/29/2022 5:08:00 PM
From: LoneClone  Read Replies (1) of 192834
 
ALPHAMIN ANNOUNCES AN UPDATED MPAMA SOUTH MINERAL RESOURCE ESTIMATE AND THE DECISION TO COMMENCE WITH DEVELOPMENT

ca.finance.yahoo.com

Alphamin Resources Corp.
Tue, March 29, 2022, 4:00 a.m.·45 min read

GRAND BAIE, Mauritius, March 29, 2022 (GLOBE NEWSWIRE) -- Alphamin Resources Corp. (AFM:TSXV, APH:JSE AltX, “Alphamin” or the “Company”), a producer of 4% of the world’s mined tin1 from its high-grade operation in the Democratic Republic of Congo, is pleased to announce an updated Mpama South Mineral Resource estimate and the decision to commence with the development of the Mpama South mine and processing plant.

HIGHLIGHTS

  • Mpama South updated Inferred Resource up 75% to 3.42Mt based on assays from 22 additional drillholes. Mpama South Mineral Resource now stands at:

  • 0.85Mt @ 2.55% Sn for 21.5kt contained tin in the Indicated category; and

  • 3.42Mt @ 2.45% Sn for 83.7kt contained tin in the Inferred category

  • Significant additional resource growth potential at Mpama South - drilling is on-going with considerable mineralisation intercepted beyond the updated Mineral Resource boundary

  • Decision to commence with the development of Mpama South:-

  • Targeted first tin production by December 2023

  • Estimated annual contained tin production of 7,232 tonnes3 at an estimated AISC2 of US$15,188/t tin (Based on an assumed US$40,000/t tin price)

  • Estimated annual EBITDA2 of US$187m3 at an assumed tin price of US$40,000/t

  • Estimated capital development cost of US$116m3 providing a projected short payback in relation to annual EBITDA potential

  • De-risked project execution with similar mining method, mining fleet and processing route as currently applied at Alphamin’s adjacent Mpama North Mine

  • Capital development cost to be funded from cash reserves

  • Mpama South’s development is expected to increase annual contained tin production from the current 12,000tpa to ~20,000tpa, approximating 6.6% of the world’s mined tin1

  • Chief Executive Officer, Maritz Smith comments:

    “The development of Mpama South as a brownfields expansion is expected to increase Alphamin’s annual tin production by 65% to a targeted 20,000t from FY2024. Tin and technology are inter-linked and consequently global demand for tin continues to increase despite constrained supply. This development decision and the resultant additional production expected by the end of 2023, positions us to deliver more tin into this widening market deficit.”

    Mpama South Updated Mineral Resource Estimate

    The updated Mineral Resource for Mpama South follows three weeks after the announcement of the maiden Mineral Resource in the Company’s announcement of 7th March 2022. The update is based on the receipt of assays for a further 22 drillholes to the original 79 drillholes on which the Maiden Mineral Resource estimate was based.

    The updated Mineral Resource presented in Figure 1 closely follows the spatial position of reported assays which Alphamin presented in its 22nd March 2022 Company announcement. This practice of regularly plotting intercepted visual cassiterite and assays in news announcements, as an early indication of where Mineral Resources may potentially extend to and then following it up with regular Mineral Resource updates, is planned to continue during 2022.

    Figure 1: Updated Mpama South Mineral Resource and visual cassiterite intercepts awaiting assay





    Source: Alphamin 2022


    Following the receipt of assays for the additional 22 drillholes, an updated Mineral Resource Estimate (MRE) for the Mpama South project was completed. The MRE, which now includes results from 102 drillholes, was estimated using the Canadian Institute of Mining, Metallurgy and Petroleum (CIM) Best Practice Guidelines (2019) and is reported in accordance with the 2014 CIM Definition Standards.

    The Mineral Resource is classified into the Indicated and Inferred categories and is reported at a base case tin grade of 1.0%, which satisfies reasonable prospects for economic extraction. Mpama South Inferred Resources increased by 75% to 3.42Mt. The Mineral Resource Statement with an effective date of 28 March 2022 is presented in Table 1:-

    Table 1: Updated Mpama South Mineral Resources effective 28 March 2022

    Classification

    Tonnes (millions)

    Sn %

    Sn Tonnes
    (thousands)

    Indicated4

    0.85

    2.55

    21.5

    Inferred5

    3.42

    2.45

    83.7


    Mineral Resources that are not Mineral Reserves do not have a demonstrated economic viability and require advanced studies and economic analysis to prove their viability for extraction.

    The MRE for Mpama South does not include a substantial quantity of subsequent drilling containing characteristic high grade visual cassiterite. Around 30 additional drillholes and over ~10,000 metres beyond and within the limits of the updated MRE at Mpama South have been completed. Subsequent Mpama South MRE updates are expected to be released throughout the remainder of the drilling phases in 2022 and beyond as assays are received.

    The MRE has been completed by Mr. J.C. Witley (BSc Hons, MSc (Eng.)) who is a geologist with 33 years’ experience in base and precious metals exploration and mining as well as Mineral Resource evaluation and reporting. He is a Principal Resource Consultant for The MSA Group (an independent consulting company), is registered with the South African Council for Natural Scientific Professions (SACNASP) and is a Fellow of the Geological Society of South Africa (GSSA). Mr. Witley has the appropriate relevant qualifications and experience to be considered a “Qualified Person” for the style and type of mineralisation and activity being undertaken as defined in National Instrument 43-101 Standards of Disclosure of Mineral Projects.

    Preliminary Economic Assessment (PEA) Results on Mpama South

    Summary results from the PEA announced on 7 March 2022 are tabulated below. The PEA was based on the maiden Resource estimate and excludes Resources from the updated MRE included in this announcement.

    Description

    Unit

    Value



    Avg. Annualised ROM mined and processed

    ‘000t

    468


    Avg. Annualised ROM grade

    %Sn

    2.21


    Processing recovery

    %

    70.0


    Avg. Annualised Contained tin produced

    tonnes

    7,232


    Avg. Annualised AISC per tonne contained tin sold (At US$40,000/t tin price)

    $/t tin

    15,188


    Avg. Annualised AISC per tonne contained tin sold (At US$30,000/t tin price)

    $/t tin

    14,326


    Avg. Annualised EBITDA (At US$40,000/t tin price)

    US$’000

    187,310


    Avg. Annualised EBITDA (At US$30,000/t tin price)

    US$’000

    121,220


    Development Capital Estimate

    US$’000

    115,970



    * The outputs are based on 100% of the project. Alphamin indirectly owns 84,14% of the project.

    The PEA is preliminary in nature, it includes Inferred Mineral Resources that are considered too speculative geologically to have economic considerations applied to them that would enable them to be categorized as Mineral Reserves. There is no certainty that the PEA results will be realized. Mineral Resources are not Mineral Reserves and do not have demonstrated economic viability, nor is there certainty that the Mineral Resource will be converted into Mineral Reserves.

    Decision to commence with the development of Mpama South

    PEA studies are conceptual in nature and are most commonly applied to projects at an early stage of exploration to conceptualise potential viability. A PEA is not a pre-feasibility or feasibility study and the Company does not purport the PEA results to be equivalent to a feasibility study. However, notwithstanding the very preliminary and conceptual nature of the PEA, based on the Company’s experience at Mpama North and knowledge base, including regarding underground conditions, the mining method and processing route, and the proximity and very similar characteristics of the deposits, the Company believes that Mpama South represents an immediately accessible adjacent Resource to the current producing Mpama North mine.

    The Board has approved the commencement of development of Mpama South without delay taking account of:

  • the opportunity to take advantage of the current and forecasted supply deficit in the tin market;

  • the Company’s ability to self-fund its development from current and short-term forecasted cash reserves;

  • the continued exploration success at Mpama South which has immediate potential for further resource extensions and successful conversion of inferred resources;

  • the expected short payback on this capital investment;

  • the potential significant value any additional production has to the operating profits of the Company in the near term.

  • The lead time to project completion and commissioning is estimated at 20 months with first tin production targeted by December 2023. The surface infrastructure and processing plant construction will be executed under an EPCM contract model, using contractors who are familiar with the Mpama North mine, and who have proven their competence at the mine to date. The underground mine development will be executed by a dedicated Alphamin mining team who will progress from developing the project to planned production mining.

    Qualified Persons

    Mr Jeremy Witley, Pr. Sci. Nat., B.Sc. (Hons.) Mining Geology, M.Sc. (Eng.), is a qualified person (QP) as defined in National Instrument 43-101 and has reviewed and approved the scientific and technical information relating to Mineral Resources contained in this news release. He is a Principal Mineral Resource Consultant of The MSA Group (Pty.) Ltd., an independent technical consultant to the Company.

    Mr. Clive Brown, Pr. Eng., B.Sc. Engineering (Mining), is a qualified person (QP) as defined in National Instrument 43-101 and has reviewed and approved all scientific and technical information other than relating to the mineral resources contained in this news release. He is a Principal Consultant and Director of Bara Consulting Pty Limited, an independent technical consultant to the Company.

    ____________________________________________________________________________

    FOR MORE INFORMATION, PLEASE CONTACT:

    Maritz Smith
    CEO
    Alphamin Resources Corp.
    Tel: +230 269 4166
    E-mail: msmith@alphaminresources.com
    ____________________________________________________________________________

    CAUTION REGARDING FORWARD LOOKING STATEMENTS

    Information in this news release that is not a statement of historical fact constitutes forward-looking information. Forward-looking statements contained herein include, without limitation, statements relating to the results of the Mpama South PEA, including estimated development costs, estimated quantities of materials to be mined and processed, estimated grades, metallurgical recoveries and quantities of tin to be produced, and estimated costs of production and EBITDA, estimated time for mine construction, the merit and potential viability of the project, estimated Mineral Resources for Mpama South, development of a mine at Mpama South and anticipated exploration activities and outcomes. Forward-looking statements are based on assumptions management believes to be reasonable at the time such statements are made. There can be no assurance that such statements will prove to be accurate, as actual results and future events could differ materially from those anticipated in such statements. Accordingly, readers should not place undue reliance on forward-looking statements. Although Alphamin has attempted to identify important factors that could cause actual results to differ materially from those contained in forward-looking statements, there may be other factors that cause results not to be as anticipated, estimated or intended. Factors that may cause actual results to differ materially from expected results described in forward-looking statements include, but are not limited to: uncertainties inherent in estimates of Mineral Resources, mine development and operating costs, mining volumes, grades and processing recoveries, particularly in light of the very early stage at which some of these estimates are being made, global economic uncertainties, volatility of metal prices, uncertainties with respect to social, community and environmental impacts, uninterrupted access to required infrastructure, adverse political geopolitical events, impacts of the global Covid-19 pandemic on mining, global supply chain issues which may cause longer lead-times to procure critical equipment and consumables which may delay project implementation as well as those risk factors set out in the Company’s Management Discussion and Analysis and other disclosure documents available under the Company’s profile at www.sedar.com. Forward-looking statements contained herein are made as of the date of this news release and Alphamin disclaims any obligation to update any forward-looking statements, whether as a result of new information, future events or results or otherwise, except as required by applicable securities laws.

    USE OF NON-IFRS FINANCIAL PERFORMANCE MEASURES

    This announcement refers to the following non-IFRS financial performance measures:

    EBITDA

    EBITDA is profit before net finance expense, income taxes and depreciation, depletion, and amortization. This measure assists readers in understanding the cash generating potential of the project including liquidity to fund working capital, pay taxes, service debt, and funding capital expenditures and investment opportunities.

    This measure is not recognized under IFRS as it does not have any standardized meaning prescribed by IFRS and is therefore unlikely to be comparable to similar measures presented by other issuers. EBITDA data is intended to provide additional information and should not be considered in isolation or as a substitute for measures of performance prepared in accordance with IFRS.

    AISC

    This measures the costs to produce a tonne of contained tin plus the capital sustaining costs to maintain the mine, processing plant and infrastructure. AISC includes mine operating production expenses such as mining, processing, administration, indirect charges (including surface maintenance and camp and tailings dam construction costs), smelting costs and deductions, refining and freight, distribution, royalties and product marketing fees. AISC does not include depreciation, depletion, and amortization, reclamation expenses, borrowing costs and exploration expenses. Contractual product marketing fees terminate in August 2024, following which date zero marketing fees have been included in estimated AISC and EBITDA.

    Sustaining capital expenditures are defined as those expenditures which do not increase contained tin production at a mine site and excludes all expenditures at the Company’s projects and certain expenditures at the Company’s operating sites which are deemed expansionary in nature.

    Risks relating to Mineral Resource Estimates

    The figures for Mineral Resources contained in this news release are estimates only and no assurance can be given that the anticipated tonnages and grades will be achieved, that the indicated level of recovery will be realized or that the Mineral Resources could be mined or processed profitably. There are numerous uncertainties inherent in estimating Mineral Resources, including many factors beyond the Company’s control. Such estimation is a subjective process, and the accuracy of any resource estimate is a function of the quantity and quality of available data and of the assumptions made and judgments used in engineering and geological interpretation. Short-term operating factors relating to the Mineral Resources, such as the need for orderly development of the ore bodies or the processing of new or different ore grades, may cause the mining operation to be unprofitable in any particular accounting period. In addition, there can be no assurance that metal recoveries in small scale laboratory tests will be duplicated in larger scale tests under on-site conditions or during production. Lower market prices, increased production costs, the presence of deleterious elements, reduced recovery rates and other factors may result in revision of its resource estimates from time to time or may render the Company’s resources uneconomic to exploit. Resource data is not indicative of future results of operations. If the Company’s actual Mineral Resources are less than current estimates or if the Company fails to develop its resource base through the realization of identified mineralized potential, its results of operations or financial condition may be materially and adversely affected.

    Neither the TSX Venture Exchange nor its regulation services provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this news release.

    Appendix 1: SAMPLE PREPARATION, ANALYSES AND QUALITY CONTROL AND QUALITY ASSURANCE (QAQC)

    After receipt of diamond drill core from the drillers at the drill rig in marked core trays, core was transported to the Company’s core shed by the site geologist for logging and sampling. After sample mark up, lithological and geotechnical logging and photography, the core was split longitudinally in half using a water-cooled rotating diamond blade core saw. The cut core was replaced into the core tray with the half to be sampled facing upward. The Archimedes method of weight in air vs weight in water was used to provide relative density measurements on the whole length of the half core that was to be sampled and then replaced in the core trays.

    Air dried samples were placed in pre-numbered sample bags together with pre-printed numbered sample tickets, which were cross-checked afterwards to prevent sample swaps. Sample bags were sealed using a plastic cable tie and then placed into poly-weave sacks which were in turn sealed with plastic cable ties. Each poly-weave sack was marked with a number and the sample numbers contained within, ready for delivery to the on-site Alphamin-Bisie laboratory (managed by Anchem) for sample preparation.

    At the laboratory, samples were first checked off against the submission list supplied and then weighed and oven dried for 2 hours at 105 degrees Celsius. The dried samples were crushed by jaw crusher to 75% passing 2mm, from which a 250g riffle split was taken. This 250g split was pulverised in ring mills to 90% passing 75µm from which a sample for analysis was taken. Samples were homogenised using a corner-to-corner methodology and two samples were taken from each pulp, one of 10g for on-site laboratory preliminary assaying and another 150g sample for export and independent accredited 3rd party laboratory assaying.

    For the initial on-site laboratory assay, 10 grams of pulverised sample is mixed with 2 grams of binder before press pellet preparation at 20t/psi for 1 minute. Press pellets are analysed in a desktop Spectro Xepos XRF analyser, twelve at a time, for Sn, Fe, Zn, Cu, Ag, Pb and As along with a standard, duplicate and blank. The analytical method conducted on the pressed pellet has an expected 10% precision and an upper detection limit of 70,000ppm and lower detection limit of 500ppm. Over-limit samples are titrated by wet chemistry with an upper limit validation of 70% Sn. The on-site laboratory assays are merely an exploration tool and were not used for reporting the exploration results or Mineral Resource estimation, which are based solely on the ALS assays.

    The 150g sample is packaged in sealed paper sample envelopes and packed in a box for export in batches of approximately 500 samples and prepared for export authorisation with national authorities. Once authorisation is received, samples are air-couriered to ALS Global in Johannesburg South Africa, a subsidiary of ALS Limited, which is an independent commercial analytical facility. ALS operations are ISO 9001:2015 certificated and the Johannesburg office is ISO 17025 accredited for Chemical Analysis by SANAS (South African National Accreditation System, facility number T087), although the accreditation does not extend to the methods used for tin.

    Received samples at ALS Johannesburg are checked off against the list of samples supplied and logged in the system. Quality Control is performed in the way of sieve tests every 50 samples and should a sample fail, the preceding 50 samples are ground in a ring mill pulveriser using a carbon steel ring set to 85 % passing 75µm. Samples are analysed for tin using method code ME-XRF05 conducted on a pressed pellet with 10% precision and an upper limit of 5,000ppm. The over-limit tin samples are analysed as fused disks according to method ME-XRF15c, which makes use of pre-oxidation and decomposition by fusion with 12:22 lithium borate flux containing 20% Sodium Nitrate as an oxidizing agent, with an upper detection limit of 79% Sn.

    Method code ME-ICP61 (HF, HNO3, HClO4 and HCl leach with ICP-AES finish) is used for 33 elements including base metals. ME-OG62, a four-acid digestion, is used on ore grade samples for lead, zinc, copper and silver. Both methods are accredited by SANAS.

    The program is designed to include a comprehensive analytical quality assurance and control routine comprising the systematic use of Company inserted standards, blanks and field duplicate samples, internal laboratory standards and analysis at an accredited laboratory. The pulps were accompanied by blind QAQC samples inserted into the sample stream by the Alphamin-Bisie geologists. These comprised blank samples, certified reference materials and pulp duplicates each at an insertion rate of approximately 5%.

    The QAQC results demonstrate that the assay results are both accurate and precise with an insignificant amount of contamination (in the order of 10pmm Sn on average) and negligible sampling errors.

    Laboratory verification work was conducted by check assays conducted at SGS South Africa (Pty) Ltd. This included 105 check samples submitted in November 2021. These samples comprised duplicated pulps from the maiden resource drillholes derived from the sample preparation at the on-site laboratory. CRMs and blanks to an appropriate level also formed part of the 105-sample submission. Check assay results showed that there was a near zero overall bias and that inter-lab precision, after removal of <0.10% Sn samples,was ~85% within 10% error and ~95% within 20% error. Given the nature of high-grade tin variability and previous knowledge of umpire check exercises at the operation, these results are considered acceptable.

    Appendix 2: SIGNIFICANT INTERCEPTS (0.5% Sn lower threshold)

    Mpama South Drillholes prefixed “BGH”

    Mpama North Drillholes prefixed “MND”

    Hole

    Easting

    Northing

    RLm

    Azi (°)

    Dip (°)

    From

    To

    Sn %

    Width

    Sample Position

    GPS

    GPS

    (m)1

    mid_x

    mid_y

    mid_z

    BGH017

    582535

    9884822

    732

    55

    -10

    237.8

    238.8

    4.99

    1

    582,732

    9,884,966

    678.6

    BGH018

    582535

    9884822

    732

    93

    0

    141.2

    144.35

    2.07

    3.15

    582,691

    9,884,820

    727.9

    145.75

    151

    0.76

    5.25

    582,696

    9,884,820

    727.9

    BGH019

    582535

    9884822

    732

    85

    -5

    147

    152

    2.05

    5

    582,696

    9,884,837

    715.8

    BGH020

    582535

    9884822

    732

    84

    -15

    160.6

    164.4

    1.45

    3.8

    582,704

    9,884,846

    689.3

    169.3

    171.1

    5.42

    1.8

    582,711

    9,884,846

    687.7

    BGH021

    582535

    9884822

    732

    93

    -15

    109.15

    110.25

    3.2

    1.1

    582,654

    9,884,821

    700.1

    164.6

    167.32

    3.29

    2.72

    582,708

    9,884,818

    687.6

    BGH022

    582554

    9884785

    732

    90

    0

    75

    80.53

    3.99

    5.53

    582,633

    9,884,784

    729.3

    109

    110

    1.35

    1

    582,664

    9,884,785

    729.9

    119.22

    122.1

    2.22

    2.88

    582,676

    9,884,785

    730.1

    BGH023

    582535

    9884822

    732

    75

    -15

    171.43

    174.32

    1.72

    2.89

    582,710

    9,884,859

    683.7

    175.85

    178

    1.09

    2.15

    582,714

    9,884,860

    683

    BGH024

    582554

    9884785

    732

    103

    -5

    127.7

    129.6

    0.54

    1.9

    582,679

    9,884,749

    717.2

    137.95

    142

    1.13

    4.05

    582,690

    9,884,746

    716.2

    BGH025

    582535

    9884822

    732

    55

    -20

    212.25

    213.4

    0.6

    1.15

    582,724

    9,884,919

    662.3

    218

    221.45

    2.29

    3.45

    582,731

    9,884,921

    660.7

    222.7

    223.7

    13.05

    1

    582,734

    9,884,923

    659.9

    228

    234.8

    2.73

    6.8

    582,741

    9,884,926

    658

    BGH026

    582554

    9884785

    732

    113

    -10

    103.71

    108

    3.3

    4.29

    582,649

    9,884,735

    713.7

    134.8

    136.45

    3.72

    1.65

    582,676

    9,884,722

    708.6

    161

    162.5

    5.61

    1.5

    582,699

    9,884,711

    704.5

    BGH030

    582554

    9884785

    732

    115

    -20

    110

    111.4

    7.24

    1.4

    582,655

    9,884,753

    692.2

    141.9

    152.5

    4.85

    10.6

    582,686

    9,884,745

    680

    158

    161.2

    3.61

    3.2

    582,699

    9,884,742

    675.3

    174.45

    175.8

    11.03

    1.35

    582,713

    9,884,738

    670.5

    BGH032

    582554

    9884785

    732

    125

    -20

    177

    178.72

    1.7

    1.72

    582,692

    9,884,684

    671.3

    182

    188.25

    3

    6.25

    582,697

    9,884,679

    669.1

    190.25

    193

    0.95

    2.75

    582,702

    9,884,676

    667.2

    194.4

    202

    1.37

    7.6

    582,707

    9,884,672

    665.3

    203.5

    208

    2.67

    4.5

    582,713

    9,884,668

    663.2

    BGH034

    582554

    9884785

    732

    115

    -25

    174.8

    178

    11.99

    3.2

    582,689

    9,884,696

    653.3

    195.7

    200

    1.21

    4.3

    582,706

    9,884,686

    644.8

    202.37

    206.65

    1.86

    4.28

    582,711

    9,884,683

    642.3

    208

    213.3

    1.4

    5.3

    582,716

    9,884,680

    640.1

    216.25

    221.3

    1.42

    5.05

    582,722

    9,884,676

    637.3

    225.65

    231

    0.7

    5.35

    582,730

    9,884,671

    634

    BGH027

    582544

    9884822

    732

    68

    -27

    212.35

    214

    0.58

    1.65

    582,729

    9,884,879

    634

    226

    229.3

    1.32

    3.3

    582,741

    9,884,883

    628.4

    235.45

    236.58

    1.54

    1.13

    582,749

    9,884,885

    625.2

    BGH028

    582554

    9884785

    732

    90

    -10

    125

    126

    1.72

    1

    582,676

    9,884,772

    700.9

    136.1

    137.18

    1.85

    1.08

    582,687

    9,884,770

    698.4

    140.28

    142

    1.03

    1.72

    582,691

    9,884,770

    697.4

    147.46

    151.25

    2.88

    3.79

    582,699

    9,884,769

    695.5

    BGH029

    582544

    9884822

    732

    93

    -25

    126

    128.35

    4.66

    2.35

    582,663

    9,884,826

    678.5

    178.9

    184.05

    1.25

    5.15

    582,713

    9,884,827

    657.7

    193.7

    196.05

    3.95

    2.35

    582,726

    9,884,827

    653

    BGH031

    582544

    9884822

    732

    75

    -25

    208

    211.53

    0.99

    3.53

    582,729

    9,884,876

    639.9

    219.4

    222.38

    1.16

    2.98

    582,739

    9,884,879

    636

    BGH033

    582544

    9884822

    732

    60

    -27

    259

    265.46

    7.32

    6.46

    582,756

    9,884,929

    612.8

    268.53

    270.52

    1.02

    1.99

    582,762

    9,884,931

    610

    BGH035

    582554

    9884785

    732

    90

    -25

    152

    165

    2.96

    13

    582,686

    9,884,816

    665

    171

    173.6

    1.47

    2.6

    582,703

    9,884,815

    657.4

    176.6

    180.08

    2.4

    3.48

    582,709

    9,884,814

    654.9

    BGH036

    582544

    9884822

    732

    65

    0

    147.45

    151.35

    2.31

    3.9

    582,687

    9,884,878

    724.8

    156.63

    160.65

    0.93

    4.02

    582,696

    9,884,881

    724.7

    BGH037

    582554

    9884785

    732

    105

    -30

    154

    157

    3.81

    3

    582,680

    9,884,741

    647.5

    194.6

    197.55

    1.54

    2.95

    582,712

    9,884,730

    626

    207.95

    211.18

    1.29

    3.23

    582,723

    9,884,726

    619.3

    216.25

    220.15

    2.79

    3.9

    582,730

    9,884,723

    615.1

    222.4

    226.7

    1.77

    4.3

    582,735

    9,884,721

    612.1

    BGH038

    582544

    9884822

    732

    75

    -30

    151.7

    154.6

    5.22

    2.9

    582,677

    9,884,851

    654.3

    218.3

    223.65

    3.38

    5.35

    582,735

    9,884,861

    621.4

    226.7

    231.5

    1.95

    4.8

    582,743

    9,884,862

    617.6

    BGH039

    582554

    9884785

    732

    100

    -22

    112.08

    113

    2.12

    0.92

    582665.1

    9,884,755

    687.6

    116.3

    120.95

    3.33

    4.65

    582,661

    9,884,753

    686.1

    145

    166

    2.2

    21

    582,696

    9,884,744

    674.2

    174.5

    176

    0.95

    1.5

    582,713

    9,884,739

    668.9

    BGH040

    582544

    9884822

    732

    60

    -30

    232

    233

    0.95

    1

    582,725

    9,884,922

    618.2

    273.7

    277.05

    3.79

    3.35

    582,761

    9,884,937

    600

    BGH041

    582500

    9884847

    732

    55

    -25

    340

    344.5

    3.03

    4.5

    582,807

    9,885,002

    599.5

    BGH042

    582544

    9884822

    732

    60

    -35

    277.35

    280

    1.93

    2.65

    582,751

    9,884,922

    569.4

    308.5

    312

    0.62

    3.5

    582,776

    9,884,932

    552.6

    313

    315.55

    1.52

    2.55

    582,779

    9,884,933

    550.5

    BGH043

    582544

    9884822

    732

    100

    -10

    102.5

    104.15

    2.69

    1.65

    582,644

    9,884,808

    709

    123

    124

    1.06

    1

    582,663

    9,884,805

    704.8

    163.64

    167

    2.82

    3.36

    582,704

    9,884,798

    696.7

    BGH044

    582500

    9884847

    710

    70

    -35

    330

    334.13

    1.31

    4.13

    582,764

    9,884,941

    533.4

    BGH045

    582544

    9884822

    732

    100

    -20

    120.65

    121.75

    31.55

    1.1

    582,656

    9,884,806

    687.4

    156

    159.4

    0.56

    3.4

    582,689

    9,884,799

    674.7

    176.7

    183.62

    3.24

    6.92

    582,708

    9,884,795

    668.1

    BGH046

    582544

    9884822

    732

    100

    -30

    195.18

    206

    2.85

    10.82

    582,712

    9,884,795

    630.5

    212.53

    215.18

    1.9

    2.65

    582,723

    9,884,793

    623.7

    218

    220.6

    7.16

    2.6

    582,728

    9,884,792

    620.8

    225

    226

    4.36

    1

    582,733

    9,884,791

    617.7

    BGH047

    582565

    9884535

    718

    60

    0

    121.58

    124.57

    0.91

    2.99

    582,653

    9,884,879

    739.2

    147.09

    148.09

    1.28

    1

    582,675

    9,884,889

    741.1

    BGH048

    582567

    9884509

    727

    90

    0

    140.75

    143.05

    0.9

    2.3

    582,708

    9,884,496

    727.7

    146.53

    148

    0.74

    1.47

    582,713

    9,884,495

    728

    BGH049

    582565

    9884535

    718

    65

    -15

    145.4

    147.4

    4.27

    2

    582,689

    9,884,599

    674.5

    BGH050

    582567

    9884509

    727

    105

    -5

    160

    161.38

    1.06

    1.38

    582,722

    9,884,469

    711.7

    BGH051

    582565

    9884535

    718

    40

    0

    134.8

    137

    2.23

    2.2

    582,662

    9,884,630

    712.3

    151

    156.3

    1.2

    5.3

    582,675

    9,884,642

    711.4

    164.18

    169.45

    3.95

    5.27

    582,685

    9,884,651

    710.8

    171.27

    172.57

    4.08

    1.3

    582,688

    9,884,655

    710.6

    BGH052

    582567

    9884509

    727

    120

    0

    205.9

    207.1

    1.86

    1.2

    582,732

    9,884,385

    722.9

    BGH053

    582565

    9884535

    718

    40

    -15

    173.73

    176.93

    9.58

    3.2

    582,685

    9,884,653

    669.2

    178.55

    181.43

    4.07

    2.88

    582,688

    9,884,656

    667.9

    192.41

    196.86

    3.28

    4.45

    582,698

    9,884,666

    664

    198.86

    206.77

    2.45

    7.91

    582,704

    9,884,671

    661.8

    207.53

    209.5

    5.04

    1.97

    582,708

    9,884,675

    660.3

    214.65

    216

    2.32

    1.35

    582,713

    9,884,680

    658.6

    BGH054

    No significant intercepts

    BGH055

    582565

    9884535

    718

    80

    -15

    145

    146

    0.62

    1

    582,705

    9,884,549

    682.7

    BGH056

    No significant intercepts

    BGH057

    No significant intercepts

    BGH058

    582565

    9884510

    727

    95

    -5

    153.35

    155.6

    1.98

    2.25

    582,717.30

    9,884,501.20

    703.9

    BGH059

    582567

    9884536

    718

    95

    0

    165

    166

    3.63

    1

    582,732.30

    9,884,528.30

    714.4

    BGH060

    No significant intercepts

    BGH061

    582567

    9884536

    727

    130

    -10

    157.57

    159.19

    1.22

    1.62

    582,719

    9,884,525

    677.7

    BGH062

    582567

    9884537

    718

    95

    -15

    154

    156

    2.18

    2

    582,695

    9,884,589

    650.2

    BGH063

    582782

    9884646

    829

    270

    -70

    186.25

    194.37

    0.82

    8.12

    582,719

    9,884,661

    650.5

    197.42

    202.45

    1.12

    5.03

    582,715

    9,884,661

    641.8

    205

    209.05

    0.83

    4.05

    582,712

    9,884,661

    635.4

    211.13

    218.9

    2.06

    7.77

    582,709

    9,884,661

    628.3

    220.4

    222.55

    0.86

    2.15

    582,706

    9,884,661

    622.5

    231

    233

    0.87

    2

    582,701

    9,884,661

    613

    BGH064

    582888

    9884976

    839

    270

    -50

    220.8

    222.6

    0.63

    1.8

    582,746

    9,884,976

    668.9

    BGH065

    582913

    9885057

    819

    270

    -60

    271

    275.95

    2.93

    4.95

    582,769

    9,885,057

    586.1

    291.56

    292.56

    1.7

    1

    582,759

    9,885,057

    570.9

    BGH066

    582888

    9884976

    839

    270

    -60

    276

    278.59

    8.49

    2.59

    582,754

    9,884,965

    596.1

    300

    301

    1.78

    1

    582,742

    9,884,965

    576.6

    BGH067

    582913

    9885057

    819

    270

    -67

    295.75

    300.47

    3.21

    4.72

    582,789

    9,885,065

    548.1

    303

    304.62

    1.56

    1.62

    582,786

    9,885,065

    543.1

    337

    338

    0.55

    1

    582,769

    9,885,068

    514.3

    BGH068

    582913

    9885057

    819

    270

    -50

    247

    248.2

    2.1

    1.2

    582,749

    9,885,051

    633.1

    251.8

    255.1

    1.75

    3.3

    582,745

    9,885,051

    628.8

    BGH069

    582888

    9884976

    839

    270

    -70

    321.8

    324.73

    3.84

    2.93

    582,779

    9,884,962

    534.7

    BGH070

    582913

    9885057

    819

    270

    -73

    331

    336.35

    3

    5.35

    582,802

    9,885,040

    505.2

    BGH071

    No significant intercepts

    BGH072

    582852

    9884845

    831

    270

    -67

    274.6

    279.7

    2.7

    5.1

    582,749

    9,884,847

    574

    290.4

    294.8

    3.61

    4.4

    582,742

    9,884,847

    560

    BGH073

    582731

    9884691

    838

    280

    -60

    121

    123

    0.72

    2

    582,671

    9,884,702

    731.9

    BGH074

    582944

    9885130

    798

    270

    -67

    278.9

    283.93

    2.85

    5.03

    582,810

    9,885,137

    551.2

    285.49

    289.1

    1.6

    3.61

    582,807

    9,885,138

    546.3

    294.51

    297.3

    7.14

    2.79

    582,802

    9,885,139

    539.1

    299.65

    303.34

    0.53

    3.69

    582,799

    9,885,139

    534.5

    BGH075

    582731

    9884691

    838

    270

    -70

    115.4

    116.65

    6.76

    1.25

    582,690

    9,884,690

    729.4

    119.5

    120.8

    15.22

    1.3

    582,688

    9,884,690

    725.7

    125.09

    129.8

    3.56

    4.71

    582,684

    9,884,690

    719.3

    162.55

    164.63

    8.94

    2.08

    582,667

    9,884,689

    687.8

    BGH076

    582752

    9884801

    849

    300

    -40

    108

    109

    0.84

    1

    582,682

    9,884,844

    779.6

    118.8

    119.45

    3.71

    0.65

    582,675

    9,884,848

    772.7

    128.15

    131

    2.82

    2.85

    582,668

    9,884,852

    765.8

    136.7

    137

    0.97

    0.3

    582,663

    9,884,855

    761

    BGH077

    582944

    9885130

    798

    270

    -72

    316.84

    321.2

    2.57

    4.36

    582,830

    9,885,130

    501.7

    323

    328.36

    2.56

    5.36

    582,827

    9,885,130

    495.8

    329.06

    330.13

    0.52

    1.07

    582,825

    9,885,130

    492.4

    335.25

    337.36

    9.63

    2.11

    582,822

    9,885,130

    486.5

    339.77

    340.07

    7.07

    0.3

    582,820

    9,885,131

    483.4

    BGH078

    582752

    9884801

    849

    280

    -40

    102

    106

    1.88

    4

    582,674

    9,884,816

    782.6

    108

    109

    0.62

    1

    582,671

    9,884,817

    779.7

    115

    117.15

    0.8

    2.15

    582,665

    9,884,818

    774.8

    BGH079

    582852

    9884845

    831

    270

    -73

    290.15

    294.4

    1

    4.25

    582,765

    9,884,842

    552.6

    296.3

    302.3

    9.46

    6

    582,763

    9,884,841

    546.1

    304.81

    305.7

    18.75

    0.89

    582,761

    9,884,841

    540.5

    312

    313

    1.08

    1

    582,758

    9,884,841

    533.8

    316.9

    321.63

    4.65

    4.73

    582,755

    9,884,840

    527.5

    322.57

    328

    5.41

    5.43

    582,753

    9,884,840

    522

    328.95

    329.48

    1.59

    0.53

    582,751

    9,884,840

    518.4

    340.68

    341.42

    4.29

    0.74

    582,747

    9,884,839

    507.6

    BGH080

    582944

    9885130

    798

    270

    -75

    339.9

    343.6

    1.05

    3.7

    582,853

    9,885,141

    469.2

    345

    346.55

    4.11

    1.55

    582,851

    9,885,141

    465.5

    360.7

    361

    11.95

    0.3

    582,846

    9,885,143

    451.5

    BGH081a

    583022

    9885299

    776

    270

    -50

    269

    274.56

    1.99

    5.56

    582,838

    9,885,306

    578.6

    275.56

    275.86

    0.64

    0.3

    582,835

    9,885,307

    576

    BGH082a

    583013

    9885209

    752

    270

    -50

    263.83

    266.3

    3.43

    2.47

    582,836

    9,885,222

    556

    268.35

    269.15

    3.32

    0.8

    582,833

    9,885,223

    553.5

    276.97

    277.27

    15.65

    0.3

    582,827

    9,885,224

    547.9

    BGH083

    No significant intercepts

    BGH084

    583023

    9885299

    776

    270

    -57

    278.95

    280.9

    6.25

    1.95

    582,857

    9,885,307

    552.8

    283.06

    286.31

    1.28

    3.25

    582,854

    9,885,307

    549.2

    BGH085

    583023

    9885299

    776

    270

    -65

    294.65

    298.35

    0.83

    3.7

    582,890

    9,885,304

    512.9

    BGH086

    583013

    9885208

    752

    270

    -57

    275.35

    280.78

    3.07

    5.43

    582,847

    9,885,214

    530.1

    286.05

    286.51

    18.9

    0.46

    582,841

    9,885,215

    524.4

    BGH087

    583023

    9885299

    777

    270

    -75

    263.75

    264.28

    0.59

    0.53

    582,946

    9,885,305

    525.0

    BGH088

    583012

    9885208

    752

    270

    -67

    297.74

    299.46

    11.93

    1.72

    582,876

    9,885,221

    487.3

    301

    301.77

    6.79

    0.77

    582,875

    9,885,221

    485.0

    303.7

    304

    2.47

    0.3

    582,873

    9,885,222

    483.0

    305.7

    306

    1.66

    0.3

    582,872

    9,885,222

    481.4

    307.2

    307.55

    6.66

    0.35

    582,871

    9,885,223

    480.2

    308.26

    308.93

    12.15

    0.67

    582,871

    9,885,223

    479.2

    309.46

    309.77

    1.98

    0.31

    582,870

    9,885,223

    478.3

    310.35

    310.68

    17.65

    0.33

    582,869

    9,885,223

    477.6

    313

    313.85

    2.82

    0.85

    582,868

    9,885,224

    475.3

    324.48

    324.86

    5.77

    0.38

    582,861

    9,885,226

    466.3

    325.43

    325.83

    10.40

    0.4

    582,861

    9,885,226

    465.6

    BGH089

    582951

    9885352

    779

    270

    -50

    198

    199

    4.58

    1

    582,822

    9,885,357

    628.9

    202.65

    203.45

    12.25

    0.8

    582,819

    9,885,357

    625.5

    205.1

    205.54

    7.96

    0.44

    582,818

    9,885,357

    623.7

    217.45

    218.45

    31.90

    1

    582,809

    9,885,358

    614.1

    BGH090

    582951

    9885423

    769

    270

    -50

    168.8

    170.48

    2.45

    1.68

    582,843

    9,885,424

    638.3

    170.88

    171.48

    12.55

    0.6

    582,842

    9,885,424

    637.1

    172.97

    173.3

    5.05

    0.33

    582,841

    9,885,424

    635.6

    BGH091

    582951

    9885352

    779

    270

    -65

    222.1

    223.5

    4.02

    1.4

    582,850

    9,885,358

    581.3

    BGH092

    583021

    9885430

    752

    270

    -55

    193.5

    193.88

    17.15

    0.38

    582,913

    9,885,431

    591.9

    BGH093

    583013

    9885345

    759

    270

    -70

    224.25

    224.75

    4.06

    0.5

    582,932

    9,885,341

    549.9

    225.8

    226.72

    1.81

    0.92

    582,931

    9,885,341

    548.3

    227.7

    228.3

    2.75

    0.6

    582,930

    9,885,341

    546.7

    BGH094

    582990

    9885055

    810

    270

    -65

    381

    384.81

    3.84

    3.81

    582,808

    9,885,054

    473.5

    389.74

    390.25

    5.95

    0.51

    582,805

    9,885,054

    467.4

    408.45

    411

    5.82

    2.55

    582,795

    9,885,054

    450.4

    BGH095

    582960

    9884759

    831

    270

    -60

    391.57

    399.6

    4.56

    8.03

    582,773

    9,884,762

    482.7

    400

    401

    1.85

    1

    582,770

    9,884,761

    478.6

    405

    411.97

    4.47

    6.97

    582,766

    9,884,761

    471.9

    414

    414.3

    1.36

    0.3

    582,763

    9,884,761

    467.2

    BGH096

    No significant intercepts

    BGH097

    583013

    9885345

    759

    270

    -58

    242

    245.5

    1.10

    3.5

    582,879

    9,885,344

    555.7

    247

    250.1

    2.66

    3.1

    582,876

    9,885,344

    551.8

    BGH099

    No significant intercepts

    BGH100

    583013

    9885345

    759

    270

    -79

    226.76

    231.27

    2.09

    4.51

    582,965

    9,885,347

    535.2

    233.08

    235

    1.58

    1.92

    582,964

    9,885,347

    530.3

    BGH101

    582990

    9884975

    813

    270

    -65

    387.37

    388.62

    2.66

    1.25

    582,802

    9,884,968

    474.7

    392.33

    394.68

    1.49

    2.35

    582,799

    9,884,968

    470.1

    396

    398.24

    0.53

    2.24

    582,797

    9,884,968

    467.1

    402.74

    410.2

    3.68

    7.46

    582,792

    9,884,967

    459.3

    423.64

    425.48

    13.48

    1.84

    582,781

    9,884,967

    444.5

    BGH102

    No significant intercepts

    MND001

    No significant intercepts

    MND002

    No significant intercepts

    MND003

    No significant intercepts

    MND004

    583392

    9886283

    682

    270

    -52

    524.76

    525.06

    0.67

    0.3

    582,994

    9,886,250

    347

    MND005

    No significant intercepts

    MND006

    No significant intercepts

    MND007

    583100

    9886210

    726

    270

    -75

    402

    402.45

    0.58

    0.45

    582,987

    9,886,211

    340.5

    MND009

    582881

    9886200

    752

    270

    -65

    96.35

    96.75

    2.28

    0.4

    582,842

    9,886,200

    667.3

    MND010

    No significant intercepts

    MND011

    583103

    9886211

    726

    270

    -83

    419.26

    428

    21.85

    8.74

    583,021

    9,886,194

    312.7

    430.6

    438.9

    17.52

    8.3

    583,018

    9,886,193

    302

    MND012

    582950

    9886140

    765

    270

    -60

    64.7

    65.35

    12.2

    0.65

    582,916

    9,886,142

    699.8

    MND013

    582945

    9886142

    759

    270

    -50

    142.7

    142.98

    10.05

    0.28

    582,852

    9,886,146

    651.2

    177

    178

    1.02

    1

    582,829

    9,886,146

    625.5

    MND014

    No significant intercepts

    MND015a

    582950

    9886140

    755

    270

    -70

    172.32

    172.68

    6.34

    0.36

    582,887

    9,886,144

    594.8

    MND016

    583063

    9886162

    741

    270

    -50

    249.42

    253

    0.62

    3.58

    582,895

    9,886,161

    554.1

    MND017

    583200

    9886170

    745

    270

    -50

    385

    386

    1.02

    1

    582,952

    9,886,164

    450.4

    MND018

    583063

    9886162

    741

    270

    -60

    284.7

    285

    11.7

    0.3

    582,912

    9,886,160

    499.2

    MND019

    583200

    9886170

    745

    270

    -64

    432.24

    444

    25.94

    11.76

    582,996

    9,886,161

    357.6

    445

    445.55

    15.3

    0.55

    582,993

    9,886,160

    351.6

    1. Apparent widths, not true thickness


    Appendix 3: Checklist of Assessment and Reporting Criteria

    Drilling techniques

    All drillholes were diamond drill cored and drilled from surface (most intersections drilled using NQ size), holes drilled orientated in an east-west direction were angled between -60° and -70°. Holes collared in the west were drilled out in fan patterns into the side of a hill and angled between 0° and minus 35°.

    Logging

    All of the drillholes were geologically logged by qualified geologists. The logging is of an appropriate standard for grade estimation.

    Drill sample recovery

    Core recovery in the mineralised zones was observed to be very good and is on average 97%.

    Sampling methods

    Half core samples were collected continuously through the mineralised zones after being cut longitudinally in half using a diamond saw. Drillhole samples were taken at nominal 1 m intervals, which were adjusted to smaller intervals in order to target the cassiterite vein zones. Lithological contacts were honoured during the sampling. MSA’s observations indicated that the routine sampling was performed to a reasonable standard and is suitable for evaluation purposes.

    Quality of assay data and laboratory tests

    At the on-site ABM laboratory (managed by Anchem), samples were first checked off against the submission list supplied and then weighed and oven dried for 2 hours at 105 degrees Celsius. The dried samples were crushed by jaw crusher to 75% passing 2mm, from which a 250g riffle split was taken. This 250g split was pulverised in ring mills to 90% passing 75µm from which a sample for analysis was taken. Samples were homogenised using a corner-to-corner methodology and two samples were taken from each pulp, one of 10g for on-site laboratory assaying and another 150g sample for export and independent accredited 3rd party laboratory assaying.

    Received samples at ALS Johannesburg are checked off against the list of samples supplied and logged in the system. Quality Control is performed by way of sieve tests every 50 samples and should a sample fail, the preceding 50 samples are ground in a ring mill pulveriser using a carbon steel ring set to 85 % passing 75µm. Samples are analysed for tin using method code ME-XRF05 conducted on a pressed pellet with 10% precision and an upper limit of 5,000ppm. The over-limit tin samples are analysed as fused disks according to method ME-XRF15c, which makes use of pre-oxidation and decomposition by fusion with 12:22 lithium borate flux containing 20% Sodium Nitrate as an oxidizing agent, with an upper detection limit of 79% Sn.

    Prior to the 2021 drilling the assays were also conducted at ALS Global in Johannesburg where samples were analysed for tin using fused disc ME-XRF05 with 10% precision and an upper limit of 10 000 ppm. This was reduced to 5,000 ppm from 2014 onwards. Over limit samples were sent to Vancouver for ME-XRF10 which uses a Lithium Borate 50:50 flux with an upper detection limit of 60% and precision of 5%.

    ME-ICP61, HF, HNO3, HCL04 and HCL leach with ICP-AES finish was used for 33 elements including base metals. ME-OG62, a four-acid digestion, was used on high grade samples for Pb, Zn, Cu & Ag.

    External quality assurance of the laboratory assays for the Alphamin samples was monitored. Blank samples (223), certified reference materials (310) and duplicate samples (277) were inserted with the field samples accounting for approximately 11% of the total sample set.

    The QAQC measures used by Alphamin revealed the following:

  • Blank samples indicated that no significant contamination occurred overall. Low levels of contamination (mostly <200 ppm Sn) mostly occurred, however 9 values between 229 ppm and 1,285 ppm were returned. Given the high grades at Bisie, the levels of contamination are not significant.

  • Five different CRMs were used with expected values between 0.18% and 31.42% Sn. The lower grade CRMs were prepared by Ore Research and Exploration (OREAS) and the two high grade CRMs (4.19% and 31.42% Sn) by the Bureau of Analysed Samples Ltd (BCS). In general, ALS returned values within the tolerance limits (three standard deviations) for the OREAS CRMs, although slightly lower than the expected value. Assays of the highest grade BCS CRM were mostly outside of the three standard deviation limits but within ±4%of the expected value. The update assays of the high grade BCS-355 CRM were within ±6% of the expected value with no overall bias relative to the CRM expected value. For the 5.07% Sn BCS CRM, assays were consistently lower than the expected value by as much as 7%. This trend continued for the update assays with an average under-assay of 7% relative to the CRM expected value. Overall, the CRMs results indicate a slight negative bias for the ALS assays.

  • Coarse duplicates show mostly excellent correlation, indicating minimal error in the process and a high degree of repeatability.

  • Verification of sampling and assaying

    The mineralisation in thirteen of the drillholes completed in 2021 at Mpama South were visually verified during a site-visits by the QP in August 2021 and several of the initial drillholes were examined during earlier site visits to Bisie. The QP observed the mineralisation in the cores and compared it with the assay results. It was found that the assays generally agreed with the observations made on the core. Core photos from the drilling programme have regularly been provided to the QP for inspection.

    105 pulp duplicates were sent to SGS (Johannesburg) in November 2021 for confirmation assaying.

  • The pulp duplicates showed acceptable correlation with the ALS assays at both high- and low-grade ranges with an overall bias of near zero.

  • Average bias for grade ranges > 1% is less than 1%.

  • Tendency for ALS to be higher (~5%) for the grade ranges less than 1%.

  • Inter-lab precision (after removal of <0.10%) is 85% within 10% error and 95% within 20% error

  • Location of data points

    The drillhole collar positions were surveyed using a differential GPS.

    Downhole surveys were completed using a multishot down-hole survey instrument (Reflex EZ-Track), or north seeking gyro (Reflex EZ-Gyro / Reflex Gyro Sprint-IQ).

    Tonnage factors (in situ bulk densities)

    Relative density measurements were made on the majority of recent drillhole samples using the Archimedes Principle of weight in air versus weight in water. A regression formula of tin grade against relative density was developed and applied to the samples that did not have direct measurements. The assigned specific gravity was interpolated into the block model using ordinary kriging.

    Data density and distribution

    A total of 107 holes were drilled in Mpama South. Holes were drilled steeply from east to west, along section lines spaced approximately 60 m to 80 m apart. Several sets of holes were drilled in a fan pattern into the side of a steep hill, with orientations spanning from the northeast to the southeast (from azimuth 045° to 125°). These drillholes fans intersect the mineralisation 25 m to 40 m apart in most of the Mineral Resource area.

    Database integrity

    Data was provided as Excel files. MSA completed spot checks on the database and is confident that the Alphamin database is an accurate representation of the original data collected.

    Dimensions

    The mineralisation consists of seven zones, with a total extent of 1 110 m along strike. The two main zones are MZ1 which has a strike length of 900 metres and 350 m down-dip and MZ2, with a strike length of 650 m and 350 m down-dip, accounting for 88% of the Mineral Resource.

    The zones occurring in the footwall and hangingwall of the MZ1 and MZ2 tend to be narrower and irregular in shape with strike lengths from 100 m to 300 m. MZ6, which is located to the south has a strike length of 270 m and a dip length of 110 m.

    Geological interpretation

    The mineralised intersections in drill core are clearly discernible. The Mineral Resource is interpreted to occur as irregular tabular mineralised zones, dipping 65-70° to the east, containing several narrow veins and disseminations of cassiterite. The mineralised zones are hosted in chlorite schist that is the result of intense hydrothermal alteration associated with a fracture system.

    The two main zones of the Mineral Resource (MZ1 and MZ2) are continuous for almost 900 m, with average thicknesses of 4.1 m and 3.4 m respectively. However, the thicknesses of these two zones vary from as little as 1 m, up to 14 m thick.

    Three smaller zones (MZ3 to MZ5) occur in the footwall of the main mineralisation which progressively become narrower, moving away from the main zone. MZ3 thickness ranges from 1 m to 9 m with an average thickness of 1.5 m. MZ4 has an average thickness of 1 m, attaining a maximum thickness of 5 m. MZ5 has an average thickness of 1.2 m, ranging from 1 m to 5 m. All zones become narrower along the edges, where they pinch-out.

    A small, narrow zone (MZ7) occurs in the hangingwall of the main mineralisation with an average thickness of 0.5 m and a maximum thickness of 4 m.

    MZ6, which occurs to the south, tends to be lower in grade and has an average thickness of 4 m, ranging from 1 m up to 9 m.

    A three-dimensional wireframe model was created for the seven zones of mineralisation based on a grade threshold of 0.40% Sn. The MZ1 and MZ2 make up the main zone, which are the most consistent zones and occur within a persistent chlorite schist. Narrower less continuous zones occur above and below the main zone within chlorite-mica schists.

    Domains

    The mineralisation was modelled as seven tabular zones containing irregular vein style mineralisation. A hard boundary was used to select data for estimation in order to honour the sharp nature of vein boundaries.

    Compositing

    Sample lengths were composited to 1 m by length and density weighting.

    Statistics and variography

    Statistics for the seven estimation domains show distributions that are positively skewed with coefficients of variation (CV) ranging from 1.33 to 1.97, the only exception being domain MZ7 which shows lower variability due to very few composites resulting in a CV of 0.79.

    The two main zones (MZ1 and MZ2) have similar average tin grades (2.30% and 2.07% respectively). The smaller, footwall zones (MZ3 to MZ5) are higher in tin grade with averages ranging from 2.4% to 4.11% while MZ6 and MZ7 are lower in tin grade, with an average of 0.57% and 1.05% respectively.

    Normal Scores semivariograms were calculated in the plane of the mineralisation, down-hole and across strike. Variograms were modelled for tin, with a range of 40 m within the plane of mineralisation and with a range of 3 m across the structures.

    Top or bottom cuts for grades

    Top caps were applied to outlier values, identified as breaks in the cumulative, probability plots.

    Data clustering

    Data clustering occurs where the fan drilling, collared on the western side of the deposit, intersect the surface drilling collared in the east, resulting in a data spacing of 25 m to 40 m towards the centre of the deposit. Outside of this area, the grid spacing becomes more regular, 60m to 80 m along strike and 50 m down-dip.

    Block size

    A rotated block model with a parent cell of 10 mX by 10 mY by 2 mZ was used. Sub-celling was used to divide the parent cells to a minimum sub-cell of 1 mX by 1mY by 0.2 mZ to closely fit the narrow portions of the vein structures

    Grade estimation

    Tin, copper, lead, zinc, silver, arsenic and density were estimated using ordinary kriging. A minimum number of 5 and a maximum of 10 one metre composites were required for the tin and density estimates. A minimum of 5 and maximum of 8 composites were used for the other elements.

    Estimation was carried out in three passes, with the first pass using search volumes coinciding with the variogram ranges. A second pass estimate expanded the search volumes by a factor of 1.5 to estimate blocks where insufficient samples were present for an estimate in the first pass. Where blocks remained un-estimated from the first two passes, a third pass, using an expansion factor of 10 was used to ensure all blocks in the model received a grade and density estimate.

    Dynamic Anisotropy was used to orientate the search volumes to the strike and dip of the individual mineralised zones.

    Resource classification

    Indicated Mineral Resources were declared where the drillhole spacing is approximately 40 m and where the geological model has low variability. The remainder of the interpreted model was classified as Inferred Mineral Resources, corresponding to areas informed by drilling spaced 50 m to 80 m apart with a maximum extrapolation of 20 m from the nearest drillhole.

    Mining cuts and cut-off grade assumptions.

    A minimum of 1 m was applied to the mineralisation model. The thickness, grade and steep dip implies that the Mineral Resource can be extracted using established underground mining methods similar to those applied at Mpama North.

    A 1% cut-off grade was applied based on the Mpama North costs and prevailing tin price.

    Isolated blocks above cut-off grade in dominantly low-grade areas of the model were not included in the Mineral Resource

    Metallurgical factors or assumptions

    The tin mineralisation occurs as cassiterite, an oxide of tin (SnO2). At Mpama North gravity separation is used to produce a tin concentrate. The Cu, Zn and Pb mineralisation occurs as sulphides, which are removed by flotation to create the cassiterite product. It is assumed that similar processes will be used to process the Mpama South mineralisation.

    Legal aspects and tenure

    Alphamin through its wholly owned DRC subsidiary, Alphamin Mining Bisie SA, has a Mining License PE 13155 which includes the Bisie Tin Mine. Alphamin has an 84.14 percent interest in ABM. The Government of the Democratic Republic of Congo (GDRC) has a non-dilutive, 5% share in ABM.

    Audits, reviews and site inspection

    The following review work was completed by MSA:

  • Inspection of approximately 20% of mineralised core intersections used in the Maiden Mineral Resource estimate.

  • Database checks.

  • Inspection of Mpama South drill sites in August 2021.

  • On-site review of the exploration processes.

  • Laboratory inspections.



  • 1 Data obtained from International Tin Association Tin Industry Review 2020.
    2 This is a non-GAAP financial measure, is not standardized and may not be comparable to similar financial measures of other issuers. See “Use of Non-IFRS Financial Performance Measures” below for a further explanation of this performance metric and how it is calculated.
    3 Data obtained from Preliminary Economic Assessment study announced on 7 March 2022.
    4 CIM Definition: An Indicated Mineral Resource is that part of a Mineral Resource for which quantity, grade or quality, densities, shape and physical characteristics are estimated with sufficient confidence to allow the application of Modifying Factors insufficient detail to support mine planning and evaluation of the economic viability of the deposit.
    5 CIM Definition: An Inferred Mineral Resource is that part of a Mineral Resource for which quantity and grade or quality are estimated on the basis of limited geological evidence and sampling. Geological evidence is sufficient to imply but not verify geological and grade or quality continuity.

    Report TOU ViolationShare This Post
     Public ReplyPrvt ReplyMark as Last ReadFilePrevious 10Next 10PreviousNext