To: Walkingshadow who wrote (6 ) 7/11/1999 8:11:00 PM From: sim1 Read Replies (1) | Respond to of 200
Here's a copy of the abstract. Biol Chem, Vol. 274, Issue 19, 13390-13398, May 7, 1999 Molecular Cloning of a Lipolysis-stimulated Remnant Receptor Expressed in the Liver Frances T. Yen, Martial Masson, Nelly Clossais-Besnard, Patrice André, Jean-Marc Grosset, Lydie Bougueleret, Jean-Baptiste Dumas, Oxana Guerassimenko, and Bernard E. Bihain From Inserm Unit 391, 35043 Rennes, France and Genset SA, 75000 Paris, France The lipolysis-stimulated receptor (LSR) is a lipoprotein receptor primarily expressed in the liver and activated by free fatty acids. Antibodies inhibiting LSR functions showed that the receptor is a heterotrimer or tetramer consisting of 68-kDa (Alpha) and 56-kDa (Beta) subunits associated through disulfide bridges. Screening of expression libraries with these antibodies led to identification of mRNAs derived by alternate splicing from a single gene and coding for proteins with molecular masses matching that of LSR Alpha and Beta. Antibodies directed against a synthetic peptide of LSR Alpha and Beta putative ligand binding domains inhibited LSR activity. Western blotting identified two liver proteins with the same apparent molecular mass as that of LSR Alpha and Beta. Transient transfections of LSR alone in Chinese hamster ovary cells increased oleate-induced binding and uptake of lipoproteins, while cotransfection of both LSR and increased oleate-induced proteolytic degradation of the particles. The ligand specificity of LSR expressed in cotransfected Chinese hamster ovary cells closely matched that previously described using fibroblasts from subjects lacking the low density lipoprotein receptor. LSR affinity is highest for the triglyceride-rich lipoproteins, chylomicrons, and very low density lipoprotein. We speculate that LSR is a rate-limiting step for the clearance of dietary triglycerides and plays a role in determining their partitioning between the liver and peripheral tissues. Copyright © 1999 by The American Society for Biochemistry and Molecular Biology, Inc. jbc.org