To: Pierre Borczuk who wrote (345 ) 8/12/1999 3:17:00 PM From: scaram(o)uche Read Replies (1) | Respond to of 1475
J Clin Invest 1999 Aug;104(3):281-90 Mixed chimerism induced without lethal conditioning prevents T cell- and anti-Galalpha1,3Gal-mediated graft rejection. Ohdan H, Yang YG, Shimizu A, Swenson KG, Sykes M Transplantation Biology Research Center, Surgical Service, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts 02129, USA. [Medline record in process] Galalpha1,3Gal-reactive (Gal-reactive) antibodies are a major impediment to pig-to-human xenotransplantation. We investigated the potential to induce tolerance of anti-Gal-producing cells and prevent rejection of vascularized grafts in the combination of alpha1,3-galactosyltransferase wild-type (GalT(+/+)) and deficient (GalT(-/-)) mice. Allogeneic (H-2 mismatched) GalT(+/+) bone marrow transplantation (BMT) to GalT(-/-) mice conditioned with a nonmyeloablative regimen, consisting of depleting CD4 and CD8 mAb's and 3 Gy whole-body irradiation and 7 Gy thymic irradiation, led to lasting multilineage H-2(bxd) GalT(+/+) + H-2(d) GalT(-/-) mixed chimerism. Induction of mixed chimerism was associated with a rapid reduction of serum anti-Gal naturally occurring antibody levels. Anti-Gal-producing cells were undetectable by 2 weeks after BMT, suggesting that anti-Gal-producing cells preexisting at the time of BMT are rapidly tolerized. Even after immunization with Gal-bearing xenogeneic cells, mixed chimeras were devoid of anti-Gal-producing cells and permanently accepted donor-type GalT(+/+) heart grafts (>150 days), whereas non-BMT control animals rejected these hearts within 1-7 days. B cells bearing receptors for Gal were completely absent from the spleens of mixed chimeras, suggesting that clonal deletion and/or receptor editing may maintain B-cell tolerance to Gal. These findings demonstrate the principle that induction of mixed hematopoietic chimerism with a potentially relevant nonmyeloablative regimen can simultaneously lead to tolerance among both T cells and Gal-reactive B cells, thus preventing vascularized xenograft rejection.