SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Politics : Formerly About Advanced Micro Devices -- Ignore unavailable to you. Want to Upgrade?


To: Yousef who wrote (78860)11/6/1999 3:41:00 PM
From: RDM  Respond to of 1574177
 
You don't have to be psychic to guess that Yousef. It has
been publishing in PC Magazine!
Flash Forward to 2005

Check out these exotic technologies now under development in research labs.

By Carol Levin ? October 8, 1999

A blazingly fast chip, a colorized plastic display, and a 6-million-pixel image sensor will take center stage at an upcoming gathering of engineers touting the latest ideas from their research labs. Every year, the movers and shakers in the chip industry convene at the International Electron Devices Meeting to share their research and provide important clues about where electronics technology will be three to five years down the road.

One of the highlights of this December's meeting in Washington, D.C., will be TRW's 69-GHz transistor, which uses an expensive, exotic semiconductor material called indium phosphide instead of silicon. Although the material is expensive and difficult to work with, it produces blazingly fast transistors that could be useful for high-speed optical communications systems.

Researchers from Intel plan to show a 16Mb memory chip running at 1.06 GHz and using technology that may one day push the clock frequencies of microprocessors beyond 1 GHz. A major problem with operating integrated circuits at such high frequencies is that they use as much power as light bulbs. With this technology, Intel engineers were able to build the device so that it consumes less power.

Light Bright
Seiko Epson has come up with an active-matrix flat-panel display built from a type of light-emitting plastic called phenylene vinylene (PPV). The researchers have built a 5-cm-diagonal display using an economical ink jet deposition process that essentially prints the display components.

Researchers from Philips Semiconductors will present a new CCD (charge-coupled device) image sensor for digital cameras that packs in 6 million pixels. That's 4 million pixels more than high-end digital cameras today. According to Philips, the resolution of the 6-million-pixel CCD is comparable to conventional 35-mm film, a parity that the digital imaging world has long sought.

Rather than presenting new electronic devices per se, several companies plan to present new processes for building them. For example, Toshiba is working with air. It turns out that gaps of air in silicon are excellent insulators, and researchers have figured out how to manipulate silicon atoms to form air pockets of desired shapes and sizes. In a sense, they've figured out how to build nothing.

Much of the discussion at the conference will focus on the challenges researchers face in trying to make smaller and smaller transistors. As chip components scale down to atomic dimensions, leakage of current and undesirable electrical phenomena become bigger problems. Although much progress has been made in packing more transistors on a chip while keeping its overall dimensions the same, the industry may be approaching the point where some of these problems will become insoluble.



To: Yousef who wrote (78860)11/6/1999 4:51:00 PM
From: Paul Engel  Respond to of 1574177
 
Yousef - Re: "Like SRAM's running at over 1 GHz !!"

Yes - running at > 1GHz while standing still.

Paul