SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Biotech / Medical : Vertex Pharmaceuticals (VRTX) -- Ignore unavailable to you. Want to Upgrade?


To: scaram(o)uche who wrote (366)11/21/1999 10:45:00 PM
From: Pseudo Biologist  Respond to of 1169
 
Parking so I remember who has proline isomerization activity:

Cell Mol Life Sci 1999 Mar;55(3):423-36

Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts.

Gothel SF, Marahiel MA
Philipps University Marburg, Germany.

Cyclosporine A therapy for prophylaxis against graft rejection revolutionized human organ transplantation. The immunosuppressant drugs cyclosporin A (CsA), FK506 and rapamycin block T-cell activation by interfering with the signal transduction pathway. The target proteins for CsA and FK506 were found to be cyclophilins and FK506-binding proteins, (FKBPs), respectively. They are unrelated in primary sequence, although both are peptidyl-prolyl cis-trans isomerases catalyzing the interconversion of peptidylprolyl imide bonds in peptide and protein substrates. However, the prolyl isomerase activity of these proteins is not essential for their immunosuppressive effects. Instead, the specific surfaces of the cyclophilin-CsA and FKBP-FK506 complexes mediate the immunosuppressive action. Moreover, the natural cellular functions of all but a few remain elusive. In some cases it could be demonstrated that prolyl isomerization is the rate-limiting step in protein folding in vitro, but many knockout mutants of single and multiple prolyl isomerases were viable with no detectable phenotype. Even though a direct requirement for in vivo protein folding could not be demonstrated, some important natural substrates of the prolyl isomerases are now known, and they demonstrate the great variety of prolyl isomerization functions in the living cell: (i) A human cyclophilin binds to the Gag polyprotein of the human immunodeficiency virus-1 (HIV-1) virion and was found to be essential for infection with HIV to occur, probably by removal of the virion coat. (ii) Together with heat shock protein (HSP) 90, a member of the chaperone family, high molecular weight cyclophilins and FKBPs bind and activate steroid receptors. This example also demonstrates that prolyl isomerases act together with other folding enzymes, for example the chaperones, and protein disulfide isomerases. (iii) An FKBP was found to act as a modulator of an intracellular calcium release channel. (iv) Along with the cyclophilins and FKBPs, a third class of prolyl isomerases exist, the parvulins. The human parvulin homologue Pin1 is a mitotic regulator essential for the G2/M transition of the eukaryotic cell cycle. These findings place proline isomerases at the intersection of protein folding, signal transduction, trafficking, assembly and cell cycle regulation.