To: Chip McVickar who wrote (2456 ) 6/27/2000 11:34:00 AM From: X Y Zebra Read Replies (1) | Respond to of 33421
are you familiar with the work of Dr. Thomas Gold and the origin of the earths oil and gas reserves...? This Dr. Gold ? Main Page : people.cornell.edu people.cornell.edu <snip>On the other side of the argument, in favor of an origin from deeply buried materials incorporated in the Earth when it formed, the following observations have been cited: (1) Petroleum and methane are found frequently in geographic patterns of long lines or arcs, which are related more to deep-seated large-scale structural features of the crust, than to the smaller scale patchwork of the sedimentary deposits. (2) Hydrocarbon-rich areas tend to be hydrocarbon-rich at many different levels, corresponding to quite different geological epochs, and extending down to the crystalline basement that underlies the sediment. An invasion of an area by hydrocarbon fluids from below could better account for this than the chance of successive deposition. (3) Some petroleums from deeper and hotter levels lack almost completely the biological evidence . Optical activity and the odd-even carbon number effect are sometimes totally absent, and it would be difficult to suppose that such a thorough destruction of the biological molecules had occurred as would be required to account for this, yet leaving the bulk substance quite similar to other crude oils. (4) Methane is found in many locations where a biogenic origin is improbable or where biological deposits seem inadequate: in great ocean rifts in the absence of any substantial sediments; in fissures in igneous and metamorphic rocks, even at great depth; in active volcanic regions, even where there is a minimum of sediments; and there are massive amounts of methane hydrates (methane-water ice combinations) in permafrost and ocean deposits, where it is doubtful that an adequate quantity and distribution of biological source material is present. (5) The hydrocarbon deposits of a large area often show common chemical or isotopic features, quite independent of the varied composition or the geological ages of the formations in which they are found. Such chemical signatures may be seen in the abundance ratios of some minor constituents such as traces of certain metals that are carried in petroleum; or a common tendency may be seen in the ratio of isotopes of some elements, or in the abundance ratio of some of the different molecules that make up petroleum. Thus a chemical analysis of a sample of petroleum could often allow the general area of its origin to be identified, even though quite different formations in that area may be producing petroleum. For example a crude oil from anywhere in the Middle East can be distinguished from an oil originating in any part of South America, or from the oils of West Africa; almost any of the oils from California can be distinguished from that of other regions by the carbon isotope ratio. (6) The regional association of hydrocarbons with the inert gas helium, and a higher level of natural helium seepage in petroleum-bearing regions, has no explanation in the theories of biological origin of peroleum. <snip>people.cornell.edu Natural Gas and Oil Thomas Gold January 1997 Natural gas and oil are widely considered to originate on Earth from the chemical evolution of biological debris. A view, widespread in earlier times and entertained by Mendeleev among others, was instead that these substances originated in materials laid down in the formation process of the Earth, and later percolated towards the surface. Similar hydrocarbons are widespread on many other planetary bodies, as well as on comets and generally in deep galactic space, clearly not related to biological materials there. <snip> More:people.cornell.edu <snip>... This type of refilling process thus allows exploitation of the domain below that from which production had been obtained before. In turn, when this lower domain had suffered a sufficient pressure loss, the process may continue to the next lower domain. How much more than the original content of a hydrocarbon field can be produced in any one case will depend on numerous details of the formation, but present indications are that it is often at least double. The present global gas and oil glut appears to be due to this effect, and we have not yet seen the end of it, or any indication that it will end soon. Gas fields will be subject to faster refilling than oil fields, and moreover the volumes of gas in lower domains will in general be greater due to the higher pressures there and the higher compressibility of gas. Gas will thus become more plentiful than oil for this reason alone, but gas seems to be generally more plentiful and more widespread than oil. The environmental advantages of changing from coal or oil to gas, by far the cleanest of all combustible fuels, are very large, and the changeover is at present still handicapped by the mistaken belief that the supplies of gas will run out soon. Thomas Gold September 1999