I wonder if the following article explains the banning of plastic pipe in your local building code. Certainly reasons like this could have world-wide implications.
Antibacterial Properties of Copper and Brass Demonstrate Potential to Combat Toxic E. coli O157 Outbreaks in the Food Processing Industry 09:02 EDT Wednesday, September 06, 2000
NEW YORK, Sept. 6 /PRNewswire/ -- A recent study by Dr. Bill Keevil at the Centre for Applied Microbiology & Research (CAMR) found that the highly toxic E. coli O157:H7 strain of bacteria survive for much shorter periods of time on copper and brass surfaces than on stainless steel. This finding has wide-ranging implications for reducing outbreaks from cross contamination of E. coli O157 in the food processing industry. The work carried out by CAMR team member Dr. Andrew Maule found that at room temperatures it takes 34 days for E. coli O157 bacteria to die on stainless steel tiles, 4 days to die on brass tiles, and just 4 hours to die on copper tiles. At chill temperatures typical of food storage, the study found that ten percent of the bacteria were still alive on stainless steel tiles after 34 days, whereas bacteria were completely eradicated on brass tiles within 12 days and on copper tiles in just 14 hours. These results prompted the International Copper Association to commission CAMR, Porton Down, U.K., to further investigate the bactericidal properties of copper, brass, and stainless steel surfaces in various conditions found in the food preparation industry. It was found, for example, that in acidic environments representative of fruit juice processing, E. coli O157 survived for as little as 45 minutes on copper, versus 2 days on stainless steel. And in environments containing animal feces with anaerobic E. coli O157 bacteria, copper and brass tiles were found to exhibit superior bactericidal effects to stainless steel tiles. "It may be possible to achieve important public health benefits just by changing the surface material commonly used in food processing," said Dr. Keevil. "Stainless steel is the most widely used surface in food preparation, but this material can remain a repository of microbial food contamination for a very long period of time." Since copper-bearing materials have such strong antibacterial properties, the researchers believe that foods most amenable for processing on copper surfaces should be determined in order to reduce E. coli O157 occurrences and outbreaks. "We now have a preliminary understanding of the bactericidal benefits of copper and brass over stainless steel in combating cross contamination from E. coli O157," said Keevil. "Our findings point to the potential use of copper and other copper alloys, such as copper-nickel, nickel silver and brass, as hygienically beneficial surfaces in the food processing industry." Plans are under consideration to investigate the antibacterial effect of copper and selected alloys on Salmonella enteritidis PT4, S. typhimurium DT104, Campylobacter jejuni, and other highly toxic bacteria. Dr. Harold T. Michels of the Copper Development Association in the USA hailed the study as a significant stride in putting copper to work combating human health problems. "For centuries, man has used copper and copper alloys to inhibit the growth of harmful microbes," said Michels. "We look forward to practical applications that may spring from this study which would control harmful bacteria, particularly related to food hygiene." ICA currently seeks partners to conduct further investigations on the potential of copper alloys to reduce the occurrence of E. coli O157 cross contamination in the food industry. Interested parties in food processing, food appliances, and related industries are encouraged to contact: In the USA: Dr. Harold Michels, CDA (212-251-7224; hmichels@cda.copper.org). Outside the USA: Dr. Chris Lee, ICA (212-251-7241; clee@copper.org)
About Escherichia coli (E. coli) O157:H7 E. coli O157:H7 is a highly infectious, ACDP Hazard Group 3 foodborne and waterborne pathogen that has created a serious public health challenge for the food processing industry. This strain of bacteria produces potent verocytotoxins, which can cause hemolytic colitis, hemolytic uremic syndrome (kidney disease), and even death. E. coli O157 bacteria infect tens of thousands of people around the world every year. An outbreak in Japan caused 9,000 people to become sick. A 1997 outbreak in Scotland was responsible for 500 infections and 20 deaths. And in the USA., over 500 people became ill and three children died after eating undercooked hamburgers infected with E. coli O157. It is believed that just ten to fifty highly toxic E. coli O157 organisms are sufficient to infect humans with illness. The infections are difficult to treat and antibiotics may prompt the bacteria to release even more verocytotoxins. In healthy individuals, E. coli O157 infections usually last three to five days. However, this bacterium can victimize children under 14 years of age, the elderly, and immunocompromised individuals with serious complications.
About ICA: The above study was funded by the International Copper Association (ICA). ICA is responsible for communicating the benefits of copper and promoting worldwide copper initiatives in the power, information, plumbing, and architectural markets, as well as in other applications. ICA operates in 28 locations worldwide. Its members represent 80% of the world's refined copper output. Its associate members are among the largest fabricators of copper and copper alloys in the world. For further information, contact: International Copper Association, Ltd., 260 Madison Avenue, New York, NY 10016-2401. Tel: (212) 251-7240. Fax: (212) 251-7245. |