SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Non-Tech : Alternative energy -- Ignore unavailable to you. Want to Upgrade?


To: Jerry in Omaha who wrote (388)12/19/2001 9:51:59 AM
From: Jerry in Omaha  Read Replies (1) | Respond to of 16955
 
Thread;

The current issue of Scientific American, a must read IMO, delves deeply into the state-of-the-art of several nuclear power technologies and offers the following editorial opinion.

Nuclear power generation has been for the past 20 years a "sleeper technology" and its proponents soon will become increasingly vocal. I am curious to see how their long simmering game plan will play itself out.

Jerry in Omaha

Is Nuclear Power Ready?

sciam.com

Nuclear power doesn't usually conjure up the most positive images, so its recent rehabilitation has been all the more notable. The Bush administration has called for a greater reliance on nuclear power, which today generates one fifth of U.S. electricity supplies. Not only could splitting the atom satisfy our burgeoning energy needs, advocates say, it could also reduce the risk of global warming from fossil-fuel burning.

Maybe. Certainly new, safer and potentially more economical reactor designs such as those discussed in this issue [see page 72] could help ease the public's apprehension. But planners must resolve some critical concerns before we can say whether nuclear energy is up to the task. Where can we put all that nuclear waste? This has always been the industry's hot potato--perhaps too literally for comfort. The nation's 103 nuclear power plants each generate an average of around 20 tons of radioactive spent fuel a year. Spent fuel now sits in cooling pools and temporary storage areas waiting for somebody to figure out what to do with it. By the end of 2001 the U.S. Department of Energy was to have ruled on the suitability of the only site being considered for a national repository: Yucca Mountain, a desert ridge of volcanic rock located 90 miles northwest of Las Vegas. In the latest plan, 70,000 metric tons of nuclear waste would be stashed in tunnels drilled 300 meters below the mountain's crest and 300 meters above the water table.

Two decades and $7 billion after site studies began, researchers are still not sure that the Yucca complex and its special storage vessels will contain the radiation and possible seepage of contaminated water for the 10,000 years required for the danger to start to subside. Further, vociferous objections of Nevadans emphasizing the potential threat of terrorists to cross-country shipments of radioactive materials now sound all too plausible. As it stands, Yucca could not start accepting used fuel until 2010.

A partial solution--though an expensive one--might be to reprocess the spent fuel for reuse. Britain, France and Japan have followed this route, but the U.S. has long resisted it because the operation produces plutonium, which terrorists and their state sponsors could divert to build bombs. New recycling techniques and breeder-reactor designs may, however, create fuels that would be useless in weapons.

Can nuclear power ever be cost-competitive? Far from providing energy that's "too cheap to meter," nuclear plants have been the most costly power option. The nuclear industry estimates that new plants must be built for less than $1,000 per kilowatt of electrical output to be economically practical. Some existing plants cost three times that amount. Future facilities will require not only more efficient reactors but also lower-cost construction.

Who will run tomorrow's nuclear plants? A 1997 DOE study found just 570 students majoring in nuclear engineering, down two thirds from five years earlier, though that trend may be flattening out. Teaching reactors at universities around the country have been shut down. Even if more nuclear plants are not built, someone is going to have to run the existing ones until they are taken out of service.

It is clear that any prospective nuclear renaissance will require some critical thinking to overcome the roadblocks. Naysayers must confront the all-too-real possibility of reduced energy supplies--and the accompanying decline in living standards--should these efforts fail.

THE EDITORS