SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Biotech / Medical : Indications -- Cancer -- Ignore unavailable to you. Want to Upgrade?


To: nigel bates who wrote (260)9/13/2002 5:03:46 PM
From: scaram(o)uche  Read Replies (1) | Respond to of 1840
 
Nat Med 2002 Sep 9; [epub ahead of print]

Reciprocal regulation of gastrointestinal homeostasis by SHP2 and STAT-mediated trefoil gene activation in gp130 mutant mice.

Tebbutt NC, Giraud AS, Inglese M, Jenkins B, Waring P, Clay FJ, Malki S, Alderman BM, Grail D, Hollande F, Heath JK, Ernst M.

[1] Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria, Australia [2] N.C.T. and A.S.G. contributed equally to this study.

The intracellular signaling mechanisms that specify tissue-specific responses to the interleukin-6 (IL-6) family of cytokines are not well understood. Here, we evaluated the functions of the two major signaling pathways, the signal transducers and activators of transcription 1 and 3 (STAT1/3) and the Src-homology tyrosine phosphatase 2 (SHP2)-Ras-ERK, emanating from the common signal transducer, gp130, in the gastrointestinal tract. Gp130(757F) mice, with a 'knock-in' mutation abrogating SHP2-Ras-ERK signaling, developed gastric adenomas by three months of age. In contrast, mice harboring the reciprocal mutation ablating STAT1/3 signaling (gp130(DeltaSTAT)), or deficient in IL-6-mediated gp130 signaling (IL-6(-/-) mice), showed impaired colonic mucosal wound healing. These gastrointestinal phenotypes are highly similar to the phenotypes exhibited by mice deficient in trefoil factor 1 (pS2/TFF1) and intestinal trefoil factor (ITF)/TFF3, respectively, and corresponded closely with the capacity of the two pathways to stimulate transcription of the genes encoding pS2/TFF1 and ITF/TFF3. We propose a model whereby mucosal wound healing depends solely on activation of STAT1/3, whereas gastric hyperplasia ensues when the coordinated activation of the STAT1/3 and SHP2-Ras-ERK pathways is disrupted.