SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Politics : Foreign Affairs Discussion Group -- Ignore unavailable to you. Want to Upgrade?


To: Dennis O'Bell who wrote (53962)10/22/2002 2:21:42 PM
From: LindyBill  Respond to of 281500
 
because these things just don't happen when rules are adhered to in food processing.


I don't know, Dennis, they seem to happen quite often. I don't think it is payoff, just carelessness. As much meat and poultry as if processed, we are lucky to keep it as low as we do. It is certainly not in the company's interests to have this happen, and not worth taking the risk of saving money to take this kind of chance. This company will probably now be sold at a loss.



To: Dennis O'Bell who wrote (53962)10/22/2002 2:58:10 PM
From: Win Smith  Read Replies (1) | Respond to of 281500
 
You might be amused by this article by Michael Pollan from last spring. I've pulled some pithy excerpts, there's even a slightly on-topic thing about energy issues in there. Thing is, beef is probably better than poultry factories on sanitation issues. Perhaps there's something to be said for vegetarianism. Many other interesting bits can be found through pbs.org , which turned up in my search. Buncha commies, those PBS types.

Power Steer nytimes.com

You'll be speeding down one of Finney County's ramrod roads when the empty, dun-colored prairie suddenly turns black and geometric, an urban grid of steel-fenced rectangles as far as the eye can see -- which in Kansas is really far. I say ''suddenly,'' but in fact a swiftly intensifying odor (an aroma whose Proustian echoes are more bus-station-men's-room than cow-in-the-country) heralds the approach of a feedlot for more than a mile. Then it's upon you: Poky Feeders, population 37,000. Cattle pens stretch to the horizon, each one home to 150 animals standing dully or lying around in a grayish mud that it eventually dawns on you isn't mud at all. The pens line a network of unpaved roads that loop around vast waste lagoons on their way to the feedlot's beating heart: a chugging, silvery feed mill that soars like an industrial cathedral over this teeming metropolis of meat. . . .

So if this system is so ideal, why is it that my cow hasn't tasted a blade of grass since October? Speed, in a word. Cows raised on grass simply take longer to reach slaughter weight than cows raised on a richer diet, and the modern meat industry has devoted itself to shortening a beef calf's allotted time on earth. ''In my grandfather's day, steers were 4 or 5 years old at slaughter,'' explained Rich Blair, who, at 45, is the younger of the brothers by four years. ''In the 50's, when my father was ranching, it was 2 or 3. Now we get there at 14 to 16 months.'' Fast food indeed. What gets a beef calf from 80 to 1,200 pounds in 14 months are enormous quantities of corn, protein supplements -- and drugs, including growth hormones. These ''efficiencies,'' all of which come at a price, have transformed raising cattle into a high-volume, low-margin business. Not everybody is convinced that this is progress. ''Hell,'' Ed Blair told me, ''my dad made more money on 250 head than we do on 850.'' . . .

Cows rarely live on feedlot diets for more than six months, which might be about as much as their digestive systems can tolerate. ''I don't know how long you could feed this ration before you'd see problems,'' Metzen said; another vet said that a sustained feedlot diet would eventually ''blow out their livers'' and kill them. As the acids eat away at the rumen wall, bacteria enter the bloodstream and collect in the liver. More than 13 percent of feedlot cattle are found at slaughter to have abscessed livers.

What keeps a feedlot animal healthy -- or healthy enough -- are antibiotics. Rumensin inhibits gas production in the rumen, helping to prevent bloat; tylosin reduces the incidence of liver infection. Most of the antibiotics sold in America end up in animal feed -- a practice that, it is now generally acknowledged, leads directly to the evolution of new antibiotic-resistant ''superbugs.'' In the debate over the use of antibiotics in agriculture, a distinction is usually made between clinical and nonclinical uses. Public-health advocates don't object to treating sick animals with antibiotics; they just don't want to see the drugs lose their efficacy because factory farms are feeding them to healthy animals to promote growth. But the use of antibiotics in feedlot cattle confounds this distinction. Here the drugs are plainly being used to treat sick animals, yet the animals probably wouldn't be sick if not for what we feed them.

I asked Metzen what would happen if antibiotics were banned from cattle feed. ''We just couldn't feed them as hard,'' he said. ''Or we'd have a higher death loss.'' (Less than 3 percent of cattle die on the feedlot.) The price of beef would rise, he said, since the whole system would have to slow down.

''Hell, if you gave them lots of grass and space,'' he concluded dryly, ''I wouldn't have a job.'' . . .

But you can go farther still, and follow the fertilizer needed to grow that corn all the way to the oil fields of the Persian Gulf. No. 534 started life as part of a food chain that derived all its energy from the sun; now that corn constitutes such an important link in his food chain, he is the product of an industrial system powered by fossil fuel. (And in turn, defended by the military -- another uncounted cost of ''cheap'' food.) I asked David Pimentel, a Cornell ecologist who specializes in agriculture and energy, if it might be possible to calculate precisely how much oil it will take to grow my steer to slaughter weight. Assuming No. 534 continues to eat 25 pounds of corn a day and reaches a weight of 1,250 pounds, he will have consumed in his lifetime roughly 284 gallons of oil. We have succeeded in industrializing the beef calf, transforming what was once a solar-powered ruminant into the very last thing we need: another fossil-fuel machine. . . .

Much of what happens next -- the de-hiding of the animal, the tying off of its rectum before evisceration -- is designed to keep the animal's feces from coming into contact with its meat. This is by no means easy to do, not when the animals enter the kill floor smeared with manure and 390 of them are eviscerated every hour. (Partly for this reason, European plants operate at much slower line speeds.) But since that manure is apt to contain lethal pathogens like E. coli 0157, and since the process of grinding together hamburger from hundreds of different carcasses can easily spread those pathogens across millions of burgers, packing plants now spend millions on ''food safety'' -- which is to say, on the problem of manure in meat.

Most of these efforts are reactive: it's accepted that the animals will enter the kill floor caked with feedlot manure that has been rendered lethal by the feedlot diet. Rather than try to alter that diet or keep the animals from living in their waste or slow the line speed -- all changes regarded as impractical -- the industry focuses on disinfecting the manure that will inevitably find its way into the meat. This is the purpose of irradiation (which the industry prefers to call ''cold pasteurization''). It is also the reason that carcasses pass through a hot steam cabinet and get sprayed with an antimicrobial solution before being hung in the cooler at the National Beef plant.