SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Biotech / Medical : Ciphergen Biosystems(CIPH): -- Ignore unavailable to you. Want to Upgrade?


To: tuck who wrote (195)1/28/2004 10:50:27 AM
From: tuck  Respond to of 510
 
[New surface chemistry]

>>Rapid Commun Mass Spectrom. 2004; 18(2): 157-62.

Solid-phase microextraction combined with surface-enhanced laser desorption/ionization introduction for ion mobility spectrometry and mass spectrometry using polypyrrole coatings.

Wang Y, Walles M, Thomson B, Nacson S, Pawliszyn J.

Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.

The successful application of polypyrrole (PPY) solid-phase microextraction (SPME) coatings as both an extraction phase and a surface to enhance laser desorption/ionization (SELDI) of analytes is reported. This SPME/SELDI fiber integrates sample preparation and sample introduction on the tip of a coated optical fiber, as well as acting as the transmission medium for the UV laser light. Using ion mobility spectrometry (IMS) detection, the signal intensity was examined as a function of extraction surface area and concentration of analyte. The linear relationship between concentration and signal intensity shows potential applicability of this detection method for quantitative analysis. Extraction time profiles for the fiber, using tetraoctylammonium bromide as test analyte, illustrated that equilibrium can be reached in less than one minute. To investigate the performance of the PPY coating, the laser desorption profile was studied. The fiber was also tested using a quadrupole time-of-flight (Q-TOF) mass spectrometer with leucine enkephalin as test analyte. Since no matrix was used, mass spectra free from matrix background were obtained. This novel SPME/SELDI fiber is easy to manufacture, and is suitable for studying low-mass analytes because of the intrinsic low background. These findings suggest that other types of conductive polymers could also be used as an extraction phase and surface to enhance laser desorption/ionization in mass spectrometry.<<

Cheers, Tuck