SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Biotech / Medical : Ciphergen Biosystems(CIPH): -- Ignore unavailable to you. Want to Upgrade?


To: tuck who wrote (224)4/27/2004 12:19:20 PM
From: tuck  Read Replies (1) | Respond to of 510
 
>>Lab Invest. 2004 Apr 26 [Epub ahead of print]

Serum protein profiling by SELDI mass spectrometry: detection of multiple variants of serum amyloid alpha in renal cancer patients.

Tolson J, Bogumil R, Brunst E, Beck H, Elsner R, Humeny A, Kratzin H, Deeg M, Kuczyk M, Mueller GA, Mueller CA, Flad T.

1Section for Transplantation Immunology and Immunohematology, University of Tuebingen, Germany.

The molecular analysis of serum is an important field for the definition of potential diagnostic markers or disease-related protein alterations. Novel proteomic technologies such as the mass spectrometric-based surface-enhanced laser desorption/ionization (SELDI) ProteinChip((R)) technique facilitate a rapid and reproducible analysis of such protein mixtures and affords the researcher a new dimension in the search for biomarkers of disease. Here, we have applied this technology to the study of a cohort of serum samples from well-characterized renal cell carcinoma patients for the identification of such proteins by comparison to healthy controls. We detected and characterized haptoglobin 1 alpha and serum amyloid alpha-1 (SAA-1) as disease related, in addition to an as-yet-unidentified marker of 10.84 kDa. Of particular note is the detection of multiple variants of SAA-1 in multiplex that have not been described in the sera of cancer patients. SAA-1 is detected as full-length protein, des-Arginine and des-Arginine/des-Serine variants at the N terminus by SELDI. In addition, we could also detect a low-abundant variant minus the first five N-terminal amino acids. Such variants may impact the function of the protein. We conclude the technique to be a reproducible, fast and simple mode for the discovery and analysis of marker proteins of disease in serum.<<

Cheer, Tuck