SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Technology Stocks : Qualcomm Moderated Thread - please read rules before posting -- Ignore unavailable to you. Want to Upgrade?


To: slacker711 who wrote (40467)4/21/2004 6:48:46 PM
From: kech  Read Replies (1) | Respond to of 197352
 
Thanks! eom



To: slacker711 who wrote (40467)4/26/2004 5:06:16 PM
From: Eric L  Respond to of 197352
 
TI Architects on Radios in Advanced CMOS

<< Its the next step in Qualcomm's RF design roadmap. It allows the RF chips that go along with the MSM to be manufacturered in a standard CMOS process (instead of a more expensive method). >>

>> Pressure Mounts in Next-Gen Mobile Phone Designs

Integration of cellular, WLAN, and Bluetooth capabilities provides a prelude for the challenges that lie ahead in the development of next-generation mobile phone architectures.

Bill Krenik
Mike Yonker
Texas Instruments
CommsDesign.com
Apr 16, 2004

commsdesign.com

Several waves of rapid change are in store for cell phone handsets. Multi-mode smartphones, wireless PDAs and multimedia devices are encroaching on territory once dominated by the simple, voice-only, single-mode cell phone. A new wave of technologies including Bluetooth, 802.11 wireless LAN (WLAN) and global positioning services (GPS) are converging in mobile devices, pressuring handset designers to devise innovative solutions that meet the stringent design constraints of the wireless market including cost, form factor, performance and power consumption.

<Big Snip>

Several alternatives exist for radio integration in a handset including multiple air interfaces. It might seem most straightforward to simply integrate all the radios together into a single radio IC and put all baseband processing functions in another. In this way, both the radio and baseband functions can be in an optimized process technology and very little new technology development is needed.

However, this approach suffers serious drawbacks. Clearly, there is no possibility to mix and match handset options in a modular fashion since every handset would have to include all incorporated air interfaces. Additionally, lack of processing capability on the radio IC would mean that aggressive control of the RF function by the processing logic would be lost, leading to lower yields and performance enabled by other possible options.

A more attractive approach is to simply integrate the RF and baseband functions of each air interface on a separate IC in deep submicron CMOS. In this way, each function is fully self-contained, allowing phone models to be developed with any number of desired radio functions to be included. Such a modular approach at the system level is especially attractive when many phone models must be designed under tight development time constraints. Additionally, this approach offers the benefit that the RF function is moved into the realm of deep submicron CMOS processing.

As opposed to designing the radio in a BiCMOS or SiGe technology, building the radio in advanced CMOS ensures that the radio function will be implemented in the most aggressively scaled technology the semiconductor industry has to offer. In addition to the other benefits of CMOS, this move to the most advanced CMOS processes available ensures that the radio will offer the lowest possible power consumption level and very low cost. Finally, tight coupling of the radio function with the baseband processing elements allows the radio to be automatically tuned, calibrated and tested by the logic functions. Higher production yields and better performance result.

Of course, integration of the radio function into CMOS with the baseband processing functions does require that a new radio architecture be implemented. Figure 3, shows a digital RF processor (DRP) that is suitable for CMOS integration. While the direct conversion receivers used in many of today's handset designs have served the industry well and literally billions of them have been shipped, their requirement for many stages of analog processing and high performance passive elements makes them unattractive for implementation in advanced digital CMOS. In contrast, the DRP receiver makes extensive use of sampled data processing and digital techniques, leveraging the very high logic density and fast clocking capability of advanced CMOS.

<Big Snip> <<

- Eric -