To: Tom Clarke who wrote (93391 ) 1/12/2005 1:07:12 PM From: cosmicforce Read Replies (1) | Respond to of 108807 lpi.oregonstate.edu Anthocyanin pigments are responsible for the red, purple, and blue colors of many fruits, vegetables, cereal grains, and flowers. They have long been the subject of investigation by botanists and plant physiologists because of their roles as pollination attractants and phytoprotective agents. ... Over 300 structurally distinct anthocyanins have been identified in nature. Anthocyanins are one class of flavonoid compounds, which are widely distributed plant polyphenols. Flavonols, flavan-3-ols, flavones, flavanones, and flavanonols are additional classes of flavonoids that differ in their oxidation state from the anthocyanins. Solutions of these compounds are colorless or pale yellow. Other phenolic compounds that comprise part of our diet include phenolic acids and their esters, such as chlorogenic acid and polymeric tannins. At least 5,000 naturally occurring polyphenolics have been identified, including over 2,000 flavonoids. The term polyphenolics is increasingly being used to describe phenolic-based compounds having similar solubility properties that are analyzed by high-performance liquid chromatography. There is considerable anecdotal and epidemiological evidence that dietary anthocyanin pigments and polyphenolics may have preventive and therapeutic roles in a number of human diseases. Through the much publicized “French paradox”, the public has become aware that certain populations of red-wine drinkers in France and Italy have much lower rates of coronary heart disease (CHD) than their North American and Northern European counterparts. It is widely accepted that red wine phenolics contribute at least partly to this beneficial effect.