SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Biotech / Medical : ACADIA Pharmaceuticals Inc (ACAD) -- Ignore unavailable to you. Want to Upgrade?


To: nigel bates who wrote (242)2/21/2006 12:26:10 PM
From: scaram(o)uche  Respond to of 588
 
CB1R antagonist with acomplia just now "approvable"..... delayed, but conceptually ok at FDA...... the best scenario for building a little market cap under this new program, maybe 12 months or so?

>> potent and selective for the CB1 receptor, active following oral dosing in preclinical models, and well tolerated at high doses <<

Nice update.



To: nigel bates who wrote (242)6/7/2006 10:07:09 PM
From: scaram(o)uche  Respond to of 588
 
Neuropharmacology. 2006 Jun 1; [Epub ahead of print]

Antiobesity effects of the novel in vivo neutral cannabinoid receptor antagonist 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-3-hexyl-1H-1,2,4-triazole - LH 21.

Pavon FJ, Bilbao A, Hernandez-Folgado L, Cippitelli A, Jagerovic N, Abellan G, Rodriguez-Franco MA, Serrano A, Macias M, Gomez R, Navarro M, Goya P, Rodriguez de Fonseca F.

Fundacion IMABIS, Neuropharmacology, Hospital Carlos Haya, Avenida Carlos Haya 82, 7(a) Planta, Pabellon A, Malaga 29010, Spain.

The present study evaluates the pharmacological profile of the new neutral cannabinoid CB1 receptor antagonist 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-3-hexyl-1H-1,2,4-triazole -LH-21- on feeding behavior and alcohol self-administration in rats, two behaviors inhibited by cannabinoid CB1 receptor antagonists. Administration of LH-21 (0.03, 0.3 and 3mg/kg) to food-deprived rats resulted in a dose-dependent inhibition of feeding. Subchronic administration of LH-21 reduced food intake and body weight gain in obese Zucker rats. Acute effects on feeding were not associated with anxiety-like behaviors, or induction of complex motor behaviors such as grooming or scratching sequences, usually observed after central administration of cannabinoid receptor blockers with inverse agonist properties. LH-21 did not markedly reduce alcohol self-administration (30% reduction observed only at a high dose of 10mg/kg). This pharmacological pattern partially overlaps that of the reference cannabinoid CB1 receptor antagonist N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methylpyrazole-3-carboxamide, SR141716A, (0.3, 1 and 3mg/kg) that reduced feeding and alcohol self-administration with similar efficacy. In vitro analysis of blood-brain barrier permeability using a parallel artificial membrane permeation assay demonstrated that LH-21 has lower permeation through membranes than SR141716A. That was confirmed in vivo by studies showing lower potency of peripherally injected LH-21 when compared to SR141716A to antagonize motor depression induced by intracerebroventricular administration of the CB1 agonist CP55,940. The neutral antagonist profile and the lower penetration into the brain of LH-21 favour this class of antagonists with respect to reference inverse agonists for the treatment of obesity because they potentially will display reduced side effects.

and

Message 22523051



To: nigel bates who wrote (242)8/8/2007 11:11:50 PM
From: scaram(o)uche  Respond to of 588
 
J Am Coll Cardiol. 2007 Aug 7;50(6):528-36. Epub 2007 Jul 23.

Pharmacological inhibition of CB1 cannabinoid receptor protects against doxorubicin-induced cardiotoxicity.

Mukhopadhyay P, Bátkai S, Rajesh M, Czifra N, Harvey-White J, Haskó G, Zsengeller Z, Gerard NP, Liaudet L, Kunos G, Pacher P.
Laboratory of Physiological Studies, NIH/NIAAA, Bethesda, Maryland 20892, USA.

OBJECTIVES: We aimed to explore the effects of pharmacologic inhibition of cannabinoid-1 (CB1) receptor in in vivo and in vitro models of doxorubicin (DOX)-induced cardiotoxicity. BACKGROUND: Doxorubicin is one of the most potent antitumor agents available; however, its clinical use is limited because of the risk of severe cardiotoxicity. Endocannabinoids mediate cardiodepressive effects through CB1 receptors in various pathophysiological conditions, and these effects can be reversed by CB1 antagonists. METHODS: Left ventricular function was measured by Millar pressure-volume system. Apoptosis markers, CB1/CB2 receptor expression, and endocannabinoid levels were determined by immunohistochemistry, Western blot, reverse transcription-polymerase chain reaction, real-time polymerase chain reaction, flow cytometry, fluorescent microscopy, and liquid chromatography/in-line mass spectrometry techniques. RESULTS: Five days after the administration of a single dose of DOX (20 mg/kg intraperitoneally) to mice, left ventricular systolic pressure, maximum first derivative of ventricular pressure with respect to time (+dP/dt), stroke work, ejection fraction, cardiac output, and load-independent indexes of contractility (end-systolic pressure-volume relation, preload-recruitable stroke work, dP/dt-end-diastolic volume relation) were significantly depressed, and the myocardial level of the endocannabinoid anandamide (but not CB1/CB2 receptor expression) was elevated compared with vehicle-treated control mice. Treatment with the CB1 antagonists rimonabant or AM281 markedly improved cardiac dysfunction and reduced DOX-induced apoptosis in the myocardium. Doxorubicin also decreased cell viability and induced apoptosis in the H9c2 myocardial cell line measured by flow cytometry and fluorescent microscopy, which were prevented by the preincubation of the cells with either CB1 antagonist, but not with CB1 and CB2 agonists and CB2 antagonists. CONCLUSIONS: These data suggest that CB1 antagonists may represent a new cardioprotective strategy against DOX-induced cardiotoxicity.