SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Politics : Foreign Affairs Discussion Group -- Ignore unavailable to you. Want to Upgrade?


To: Wharf Rat who wrote (187882)6/1/2006 10:47:29 AM
From: Hawkmoon  Respond to of 281500
 
I think water vapor is heavier. Like in baseball, they talk about heavy air. I'd have to check that stuff. Maybe if I get bored at work tomorrow I'll dig out some books.

Don't feel bad. I thought the same thing. But apparently it's not.

Most people who haven't studied physics or chemistry find it hard to believe that humid air is lighter, or less dense, than dry air. How can the air become lighter if we add water vapor to it?

Scientists have known this for a long time. The first was Isaac Newton, who stated that humid air is less dense than dry air in 1717 in his book, Optics. But, other scientists didn't generally understand this until later in that century.


To see why humid air is less dense than dry air, we need to turn to one of the laws of nature the Italian physicist Amadeo Avogadro discovered in the early 1800s. In simple terms, he found that a fixed volume of gas, say one cubic meter, at the same temperature and pressure, would always have the same number of molecules no matter what gas is in the container. Most beginning chemistry books explain how this works.

Imagine a cubic foot of perfectly dry air. It contains about 78% nitrogen molecules, which each have an atomic weight of 28. Another 21% of the air is oxygen, with each molecule having an atomic weight of 32. The final one percent is a mixture of other gases, which we won't worry about. Molecules are free to move in and out of our cubic foot of air. What Avogadro discovered leads us to conclude that if we added water vapor molecules to our cubic foot of air, some of the nitrogen and oxygen molecules would leave -- remember, the total number of molecules in our cubic foot of air stays the same. The water molecules that replace nitrogen or oxygen have an atomic weight of 18. This is lighter than both nitrogen and oxygen. In other words, replacing nitrogen and oxygen with water vapor decreases the weight of the air in the cubic foot; that is, it's density decreases.

Wait a minute, you might say, "I know water's heavier than air." True, liquid water is heavier, or more dense, than air. But, the water that makes the air humid isn't liquid. It's water vapor, which is a gas that is lighter than nitrogen or oxygen.

Compared to the differences made by temperature and air pressure, humidity has a small effect on the air's density. But, humid air is lighter than dry air at the same temperature and pressure.


en.wikipedia.org