SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Politics : Rat's Nest - Chronicles of Collapse -- Ignore unavailable to you. Want to Upgrade?


To: Wharf Rat who wrote (4449)7/14/2006 7:31:58 PM
From: Wharf Rat  Read Replies (1) | Respond to of 24210
 
Sandia Labs proposes energy surety model
by Michael Millikin


With concerns that energy use will rapidly increase over the next several years while fossil fuels diminish as well as numerous other energy uncertainties including the results of climate change, Sandia National Laboratories is proposing applying the principles of surety to energy.

Energy surety takes an integrated approach to achieving safety, security, reliability, recoverability and sustainability objectives for the nation’s civilian and military energy systems. Patterned after Sandia’s many decades of applying surety principles to weapon systems, the approach includes choosing the best mix of fuels and applying conservation principles to all steps, starting with energy production and ending with final use, even using what would normally be characterized as waste heat and mass.

The sustainability model was the most difficult to create because sustainability was not a system requirement in the original weapons system surety approach.
—Margie Tatro, director of Energy, Infrastructure & Knowledge Systems Center

Sandia defined sustainability in both qualitative and thermodynamic terms.

Tatro, together with Rush Robinett, senior manager of Sandia’s Energy and Infrastructure Futures Group and others in the center designed the new model and detailed it in a recently-released internal Sandia report, Toward an Energy Surety Future.

Energy is all around us—just look at the power of hurricanes and tsunamis. It’s not the lack of energy that’s the problem, it’s a knowledge shortage of how to manage and harness that energy. We believe the energy surety approach is the best way to do this. If we don’t follow this model, the whole world, including the US, could find itself living a lifestyle of the Third World.
—Rush Robinett

The report outlines a three-step strategy for moving toward better matching of energy resources with energy needs.
As humans, we are in a never-ending battle with the second law of thermodynamics, constantly using exergy to support ourselves and our surroundings in an environment in which we are in nonequilibrium. This activity (which consumes exergy) is in keeping with nature’s biological tendency to use resources to create “order” around us. This consumption expands until the resources become exhausted and equilibrium with competing life forms is reached, but to let this natural process run to its normal conclusion would not be consistent with our current view of “civilized societies” because of the implications of societal collapse upon complete resource depletion.

We offer a three-step strategy for moving toward better matching of our exergy resources with our exergy needs. As a first step, we must improve the second law efficiency of energy conversion, transport and use processes. Secondly, we must attempt to close the cycle of the same processes taking into consideration the interactions with the earth’s biosphere, at least when open cycles provide undesired consequences. The final step to obtain true sustainability into the indefinite future would be to harvest the earth’s persistent exergy sources at no greater rate than which they are being made available to us.

Efficiency. The first step is to squeeze every unit of available energy from the current supplies. This goes beyond the implementation of higher-efficiency electricity-consuming devices (lighting, appliances, and motors) and vehicles (diesels and hybrids) to include waste-to-energy options such as the extraction of methane from landfills and the conversion of biomass wastes to liquid fuels. Making better use of limited fossil supplies will allow the country to buy time while it moves down the path towards energy surety, Tatro says.

Population control. Holding the world’s population to a level that the earth can sustain and capping energy demand at some point are also parts of step one. To address demand, consumer needs for energy must be reduced. The traditional view of an expanding world population and economy must level off or it could surge to the point of “resource exhaustion, social upheaval, disease epidemic, and then collapse,” notes the report. An ultimate plan must have some commitment to hold growing populations in check.

Conservation. A final part of the initial step is to limit the use of fossil fuel resources—although the magnitude of potentially recoverable fossil fuels may never be known. Conservation must be a major part of the surety plan.

Storage. The second step involves storing energy for later use when there is no wind, the sun is obscured, or an energy supply is disrupted. Currently, energy storage techniques are used in limited ways, ranging from battery-powered units to managing brief interruptions to the Strategic Petroleum Reserve. Examples that could provide expanded energy storage include solar production of hydrogen for fuel cells, solar-powered conversion of carbon dioxide and water to liquid fuels, and energy storage from solar thermal collectors.

Fusion. Step three is to learn how to reproduce the sun’s fusion process on earth in a safe, secure, reliable, and sustainable way. “Though we do not know if fusion can succeed as a practical terrestrial energy source, we believe that its promise is worth extensive investment,” the report says.

While it might not be possible to fully accomplish all the goals in the energy surety model, striving toward them is far better than blindly marching toward energy depletion, environmental exhaustion, and esthetic despair, only to discover that the scarce remaining resources are inadequate to meet needs. The big question now is how to make this happen in the real world. The driver may very well be people’s pocketbooks, caused by highly unpredictable fuel prices, coupled with increasing threats of terrorism.
—Rush Robinett

Resources:

Toward an Energy Surety Future
Published on 12 Jul 2006 by Green Car Congress. Archived on 14 Jul 2006.
energybulletin.net