SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Biotech / Medical : Millennium Pharmaceuticals, Inc. (MLNM) -- Ignore unavailable to you. Want to Upgrade?


To: Icebrg who wrote (2816)3/5/2007 4:23:38 PM
From: Icebrg  Respond to of 3044
 
Proteasomal inhibition in intracerebral hemorrhage: Neuroprotective and anti-inflammatory effects of bortezomib.

Neurosci Res. 2007 Jan 19;

Sinn DI, Lee ST, Chu K, Jung KH, Kim EH, Kim JM, Park DK, Song EC, Kim BS, Yoon SS, Kim M, Roh JK.

Stroke & Neural Stem Cell Laboratory in Clinical Research Institute, Department of Neurology, Seoul National University Hospital, Program in Neuroscience, Neuroscience Research Institute of SNUMRC, Seoul National University, Seoul, South Korea.

Inflammation is an important pathophysiologic mechanism of injury induced by intracerebral hemorrhage (ICH). The ubiquitin-proteasome system (UPS) regulates the inflammatory responses via the up-regulation of several pro-inflammatory molecules. In this study, we determined that a potent proteasome inhibitor, bortezomib, exerted therapeutic effects in experimental model of ICH. Either bortezomib (0.05, 0.2, 0.5, 1mg/kg) or vehicle was intravenously administered 2h after ICH induction. The high doses of bortezomib caused high mortality rates. Bortezomib at 0.2mg/kg reduced the early hematoma growth and alleviated hematoma volume and brain edema at 3 days after ICH, compared with the ICH-vehicle group. The numbers of myeloperoxidase(+) neutrophils, Ox42(+) microglia, and TUNEL(+) cells in the perihematomal regions were decreased by bortezomib. Bortezomib induced significant decrements of mRNA expression of TNF-alpha and IL-6. The production of iNOS and COX2 was also reduced significantly by bortezomib. We concluded that the early treatment with bortezomib induced a reduction in the early hematoma growth and mitigated the development of brain edema, coupled with a marked inhibitory effect on inflammation in ICH.



To: Icebrg who wrote (2816)10/19/2007 2:23:30 PM
From: tuck  Respond to of 3044
 
[Proteasome inhibitors in the treatment of childhood cancer -- caution?]

>>Cancer Res. 2007 Oct 15;67(20):10078-10086.

Proteasome Inhibition Up-regulates p53 and Apoptosis-Inducing Factor in Chondrocytes Causing Severe Growth Retardation in Mice.

Zaman F, Menendez-Benito V, Eriksson E, Chagin AS, Takigawa M, Fadeel B, Dantuma NP, Chrysis D, Sävendahl L.
Department of Woman and Child Health, Pediatric Endocrinology Unit, Astrid Lindgren Children's Hospital, Department of Cell and Molecular Biology, The Medical Nobel Institute, and Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet, Stockholm, Sweden.

Proteasome inhibitors (PI), a novel class of anticancer drugs, are relatively well tolerated and have recently been introduced into the clinic for the treatment of multiple myeloma. The tumor selectivity and low toxicity of PIs are surprising, given the crucial role of the ubiquitin/proteasome system in a multitude of cellular processes. Here, we show that systemic administration of PIs specifically impairs the ubiquitin/proteasome system in growth plate chondrocytes. Importantly, young mice displayed severe growth retardation during treatment as well as 45 days after the cessation of treatment with clinically relevant amounts of MG262 (0.2 mumol/kg body weight/injection) or bortezomib (1.0 mg/kg body weight/injection). Dysfunction of the ubiquitin/proteasome system was accompanied by the induction of apoptosis of stem-like and proliferative chondrocytes in the growth plate. These results were recapitulated in cultured fetal rat metatarsal bones and chondrocytic cell lines (rat, human). Apoptosis was associated with up-regulation of the proapoptotic molecules, p53 and apoptosis-inducing factor (AIF), both in vitro and in vivo. In addition to the observation that AIF is expressed in the growth plate, we also provide evidence that AIF serves as a direct target protein for ubiquitin, thus explaining its prominent up-regulation upon proteasome inhibition. Suppression of p53 or AIF expression with small interfering RNAs partly rescued chondrocytes from proteasome inhibition-induced apoptosis (35% and 41%, respectively). Our observations show that proteasome inhibition may selectively target essential cell populations in the growth plate causing significant growth failure. These findings could have important implications for the use of proteasome inhibitors in the treatment of childhood cancer.<<