SI
SI
discoversearch

We've detected that you're using an ad content blocking browser plug-in or feature. Ads provide a critical source of revenue to the continued operation of Silicon Investor.  We ask that you disable ad blocking while on Silicon Investor in the best interests of our community.  If you are not using an ad blocker but are still receiving this message, make sure your browser's tracking protection is set to the 'standard' level.
Politics : The Environmentalist Thread -- Ignore unavailable to you. Want to Upgrade?


To: Nadine Carroll who wrote (10970)3/28/2007 12:30:53 PM
From: Wharf Rat  Read Replies (1) | Respond to of 36921
 
Tuvalu
As of February 2002, "based on short term SEA LEVEL rise analyses ... the nearly nine years of data return show a rate plus 0.9 millimeters (0.03 inch) per year," they say.

Message 23154006

123. New Zealand -
(where Maurice Palmer sez he can't see changes...)
Ocean warming. The oceans around New Zealand have been warming over the past decade at a rate not seen since the 1930s. Over the last century the average ocean temperatures around New Zealand increased by about 1.8?F (1?C), slightly more than the global average. Despite 20 years of cooling from the 1970s through the early 1990s - due to longer and stronger El Ni??vents affecting the regional ocean temperatures - New Zealand?s ocean temperature increase over the 20th century is consistent with the global average upward trend. Sea level along the country?s shoreline has been rising accordingly by an average of 0.04-0.08 inches (1-2 mm) per year.
=============
The low-lying South Pacific island nation of Micronesia has experienced an annual SEA LEVEL rise of 21.4 mm since 2001.
Message 22892001
===============

The IPCC sea level numbers
Filed under: Climate Science Arctic and Antarctic IPCC— stefan @ 11:46 am
The sea level rise numbers published in the new IPCC report (the Fourth Assessment Report, AR4) have already caused considerable confusion. Many media articles and weblogs suggested there is good news on the sea level issue, with future sea level rise expected to be a lot less compared to the previous IPCC report (the Third Assessment Report, TAR). Some articles reported that IPCC had reduced its sea level projection from 88 cm to 59 cm (35 inches to 23 inches) , some even said it was reduced from 88 cm to 43 cm (17 inches), and there were several other versions as well (see "Broad Irony"). These statements are not correct and the new range up to 59 cm is not the full story. Here I will try to clarify what IPCC actually said and how these numbers were derived. (But if you want to skip the details, you can go straight to the critique or the bottom line).

What does IPCC say?

The Summary for Policy Makers (SPM) released last month provides the following table of sea level rise projections:

Sea Level Rise
(m at 2090-2099 relative to 1980-1999)
Case Model-based range
excluding future rapid dynamical
changes in ice flow
B1 scenario 0.18 – 0.38
A1T scenario 0.20 – 0.45
B2 scenario 0.20 – 0.43
A1B scenario 0.21 – 0.48
A2 scenario 0.23 – 0.51
A1FI scenario 0.26 – 0.59

It is this table on which the often-cited range of 18 to 59 cm is based. The accompanying text reads:

• Model-based projections of global average sea level rise at the end of the 21st century (2090-2099) are shown in Table SPM-3. For each scenario, the midpoint of the range in Table SPM-3 is within 10% of the TAR model average for 2090-2099. The ranges are narrower than in the TAR mainly because of improved information about some uncertainties in the projected contributions15. {10.6}.

Footnote 15: TAR projections were made for 2100, whereas projections in this Report are for 2090-2099. The TAR would have had similar ranges to those in Table SPM-3 if it had treated the uncertainties in the same way.

• Models used to date do not include uncertainties in climate-carbon cycle feedback nor do they include the full effects of changes in ice sheet flow, because a basis in published literature is lacking. The projections include a contribution due to increased ice flow from Greenland and Antarctica at the rates observed for 1993-2003, but these flow rates could increase or decrease in the future. For example, if this contribution were to grow linearly with global average temperature change, the upper ranges of sea level rise for SRES scenarios shown in Table SPM-3 would increase by 0.1 m to 0.2 m. Larger values cannot be excluded, but understanding of these effects is too limited to assess their likelihood or provide a best estimate or an upper bound for sea level rise. {10.6}

• If radiative forcing were to be stabilized in 2100 at A1B levels, thermal expansion alone would lead to 0.3 to 0.8 m of sea level rise by 2300 (relative to 1980–1999). Thermal expansion would continue for many centuries, due to the time required to transport heat into the deep ocean. {10.7}

• Contraction of the Greenland ice sheet is projected to continue to contribute to sea level rise after 2100. Current models suggest ice mass losses increase with temperature more rapidly than gains due to precipitation and that the surface mass balance becomes negative at a global average warming (relative to pre-industrial values) in excess of 1.9 to 4.6°C. If a negative surface mass balance were sustained for millennia, that would lead to virtually complete elimination of the Greenland ice sheet and a resulting contribution to sea level rise of about 7 m. The corresponding future temperatures in Greenland are comparable to those inferred for the last interglacial period 125,000 years ago, when paleoclimatic information suggests reductions of polar land ice extent and 4 to 6 m of sea level rise. {6.4, 10.7}

• Dynamical processes related to ice flow not included in current models but suggested by recent observations could increase the vulnerability of the ice sheets to warming, increasing future sea level rise. Understanding of these processes is limited and there is no consensus on their magnitude. {4.6, 10.7}

• Current global model studies project that the Antarctic ice sheet will remain too cold for widespread surface melting and is expected to gain in mass due to increased snowfall. However, net loss of ice mass could occur if dynamical ice discharge dominates the ice sheet mass balance. {10.7}

• Both past and future anthropogenic carbon dioxide emissions will continue to contribute to warming and sea level rise for more than a millennium, due to the timescales required for removal of this gas from the atmosphere. {7.3, 10.3}

(The above quotes document everything the SPM says about future sea level rise. The numbers in wavy brackets refer to the chapters of the full report, to be released in May.)

What is included in these sea level numbers?

Let us have a look at how these numbers were derived. They are made up of four components: thermal expansion, glaciers and ice caps (those exclude the Greenland and Antarctic ice sheets), ice sheet surface mass balance, and ice sheet dynamical imbalance.

1. Thermal expansion (warmer ocean water takes up more space) is computed from coupled climate models. These include ocean circulation models and can thus estimate where and how fast the surface warming penetrates into the ocean depths.

2. The contribution from glaciers and ice caps (not including Greenland and Antarctica), on the other hand, is computed from a simple empirical formula linking global mean temperature to mass loss (equivalent to a rate of sea level rise), based on observed data from 1963 to 2003. This takes into account that glaciers slowly disappear and therefore stop contributing – the total amount of glacier ice left is actually only enough to raise sea level by 15-37 cm.

3. The contribution from the two major ice sheets is split into two parts. What is called surface mass balance refers simply to snowfall minus surface ablation (ablation is melting plus sublimation). This is computed from an ice sheet surface mass balance model, with the snowfall amounts and temperatures derived from a high-resolution atmospheric circulation model. This is not the same as the coupled models used for the IPCC temperature projections, so results from this model are scaled to mimic different coupled models and different climate scenarios. (A fine point: this surface mass balance does include some “slow” changes in ice flow, but this is a minor contribution.)

4. Finally, there is another way how ice sheets can contribute to sea level rise: rather than melting at the surface, they can start to flow more rapidly. This is in fact increasingly observed around the edges of Greenland and Antarctica in recent years: outlet glaciers and ice streams that drain the ice sheets have greatly accelerated their flow. Numerous processes contribute to this, including the removal of buttressing ice shelves (i.e., ice tongues floating on water but in places anchored on islands or underwater rocks) or the lubrication of the ice sheet base by meltwater trickling down from the surface through cracks. These processes cannot yet be properly modelled, but observations suggest that they have contributed 0 – 0.7 mm/year to sea level rise during the period 1993-2003. The projections in the table given above assume that this contribution simply remains constant until the end of this century.

As an example, take the A1FI scenario – this is the warmest and therefore defines the upper limits of the sea level range. The “best” estimates for this scenario are 28 cm for thermal expansion, 12 cm for glaciers and -3 cm for the ice sheet mass balance – note the IPCC still assumes that Antarctica gains more mass in this manner than Greenland loses. Added to this is a term according to (4) simply based on the assumption that the accelerated ice flow observed 1993-2003 remains constant ever after, adding another 3 cm by the year 2095. In total, this adds up to 40 cm, with an ice sheet contribution of zero. (Another fine point: This is slightly less than the central estimate of 43 cm for the A1FI scenario that was reported in the media, taken from earlier drafts of the SPM, because those 43 cm was not the sum of the individual best estimates for the different contributing factors, but rather it was the mid-point of the uncertainty range, which is slightly higher as some uncertainties are skewed towards high values.)

How do the new numbers compare to the previous report?

Sea level rise as observed (from Church and White 2006) shown in red up to the year 2001, together with the IPCC (2001) scenarios for 1990-2100. See second figure below for a zoom into the period of overlap.

The TAR showed sea level rise curves for a range of emission scenarios (shown in the Figure above together with the new observational record of Church and White 2006). The range was based on simulations with a simple model (the MAGICC model) tuned to mimic the behaviour of a range of different complex climate models (e.g. in terms of different climate sensitivities ranging from 1.7 to 4.2 ºC), combined with simple equations for the glacier and ice sheet mass balances (“degree-days scheme”). This model-based range is shown as the grey band (labelled “Several models all SRES envelope” in the original Figure 5 of the TAR SPM) and ranged from 21 to 70 cm, while the central estimate for each emission scenario is shown as a coloured dashed line. The largest central estimate of sea level rise is for the A1FI scenario (purple, 49 cm).
In addition, the dashed grey lines indicate additional uncertainty in ice sheet behaviour. These lines were labelled “All SRES envelope including land ice uncertainty” in the TAR SPM and extended the range up to 88 cm, adding 18 cm at the top end. One has to delve deeply into the appendix of Chapter 11 of the TAR to find out what these extra 18 cm entail: they include a “mass balance uncertainty” and an “ice dynamic uncertainty”, where the latter is simply assumed to be 10% of the total computed mass loss of the Greenland ice sheet. Note that such an ice dynamic uncertainty was only included for Greenland but not for Antarctica; instability of the West Antarctic Ice Sheet, a scenario considered “very unlikely” in the TAR, was explicitly not included in the upper limit of 88 cm.

As we mentioned in our post on the release of the SPM, it is apples and oranges to say that IPCC reduced the upper sea level limit from 88 cm to 59 cm, as the former included “ice dynamic uncertainty” (albeit only for Greenland, as rapid ice flow changes in Antarctica were considered too unlikely to bother at the time), while the latter discusses this ice flow uncertainty separately in the text, stating it could add 10 cm, 20 cm or even more to the 59 cm in the table.

So is it better to compare the model-based range 21 - 70 cm from the TAR to the 18 - 59 cm from the AR4? Even that is apples and oranges. For one, TAR cites the rise up to the year 2100, the AR4 up to the period 2090-2099, thus missing the last 5 years (or 5.5 years, but let’s not get too pedantic) of sea level rise. For 2095, the TAR projection reduces from 70 cm to 65 cm (the central estimate for A1FI reduces from 49 cm to 46 cm). Also, the TAR range is a 95% confidence interval, the AR4 range a narrower 90% confidence interval. Giving the TAR numbers also as 90% ranges shaves another 3 cm off the top end.

Sounds complicated? There are some more technical differences... but I will spare you those. The Paris IPCC meeting actually discussed the request from some delegates to provide a direct comparison of the AR4 and TAR numbers, but declined to do this in detail for being too complicated. The result was the two statements:

The TAR would have had similar ranges to those in Table SPM-3 if it had treated the uncertainties in the same way.

and

For each scenario, the midpoint of the range in Table SPM-3 is within 10% of the TAR model average for 2090-2099.

(In fact delegates were told by the IPCC authors in Paris that with the new AR4 models, the central estimate for each scenario is slightly higher that with the old models, if numbers are reported in a comparable manner.)

The bottom line is thus that the methods have significantly improved (which is the reason behind all those methodological changes), but the expectation of how much sea level will rise in the coming century has not significantly changed. The biggest change is that ice sheet dynamics look more uncertain now than at the time of the TAR, which is why this uncertainty is not included any more in the cited range but discussed separately in the text.

Critique - Could these numbers underestimate future sea level rise?

There’s a number of issues worth discussing about these sea level numbers.

The first is the treatment of potential rapid changes in ice flow (item 4 on the list above). The AR4 notes that the ice sheets have been losing mass recently (the analysis period is 1993-2003). Greenland has contributed +0.14 to +0.28 mm/year of sea level rise over this period, while for Antarctica the uncertainty range is -0.14 to +0.55 mm/year. It is noted that the mass loss of Antarctica is mostly or entirely due to recent changes in ice flow. The question then is: how much will this process contribute to future sea level rise? The honest answer is: we don’t know. As the SPM states, by the year 2095 it could be 10 cm. Or 20 cm. Or more. Or less.

The IPCC included one guess into the “model-based range” provided in the table: it took half of the Greenland mass loss and the whole Antarctic mass loss for 1993-2003, and assumed this would remain constant ever after until 2100. This assumption in my view has no scientific basis, as the ice-flow is almost certainly highly variable in time. The report itself states that this ice loss is due to a recent acceleration of flow, and that in 2005 it was already higher, and that in future the numbers could be several times higher – or they could be lower. Adding such an ill-founded number into the “model-based” range degrades the much more reliable estimates for thermal expansion, mountain glaciers and mass balance. Even worse: to numbers with error estimates, it adds a number without proper error estimate (the observational uncertainty for 1993-2003 is included, but who would claim this is an error estimation for future ice flow changes?). And then it presents only the combined error margins – you will notice that no central estimate is provided in the above table. If I had presented this as an error calculation in a first-semester physics assignment, I doubt I would have gotten away with it. The German delegation in Paris (of which I was a member) therefore suggested taking this ice-flow estimate out of the tabulated range. The numbers would have become slightly lower, but this approach would not have mixed up very different levels of uncertainty, and it would have been clear what is included in the table and what is not (namely ice flow changes), rather than attempting to partially include ice flow changes. The ice flow changes could have been discussed in the text – stating there that at the 1993-2003 rate, this term would contribute 3 cm by 2095, but it is bound to change and could turn out to be 10 cm or 20 cm or more. However, we found no support for this proposal, which would not have changed the science in any way but improved the clarity of presentation.

As it is now, because of the complex and opaque way of combining the errors, even I could not tell you by how much the upper limit of 59 cm would be reduced if the questionable ice flow estimate was taken out, and one of the reasons provided by the IPCC authors for not adopting our proposal was that the numbers could not be calculated quickly.

A second problem with the above range is that the models used to derive this projection significantly underestimate past sea level rise. We tried in vain to get this mentioned in the SPM, so you have to go to the main report to find this information. The AR4 states that for the period 1961-2003, the models on average give a rise of 1.2 mm/year, while the data show 1.8 mm/year, i.e. a 50% faster rise. This is despite using observed ice sheet mass loss (0.19 mm/year) in the “modelled” number in this comparison, otherwise the discrepancy would be even larger – the ice sheet models predict that the ice sheets gain mass due to global warming. The comparison looks somewhat better for the period 1993-2003, where the “models” give a rise of 2.6 mm/year while the data give 3.1 mm/year. But again the “models” estimate includes an observed ice sheet mass loss term of 0.41 mm/year whereas ice sheet models give a mass gain of 0.1 mm/year for this period; considering this, observed rise is again 50% faster than the best model estimate for this period. This underestimation carries over from the TAR models (see Rahmstorf et al. 2007 and the Figure below) – this is not surprising, since the new models give essentially the same results as the old models, as discussed above.

Comparison of the 2001 IPCC sea-level scenarios (starting in 1990) and observed data: the Church and White (2006) data based primarily on tide gauges (annual, red) and the satellite altimeter data (updated from Cazenave and Nerem 2004, 3-month data spacing, blue, up to mid-2006) are shown with their trend lines. Note that the observed sea level rise tends to follow the uppermost dashed line of the IPCC scenarios, namely the one "including land ice uncertainty", see first Figure.

We therefore see that sea level appears to be rising about 50% faster than models suggest – consistently for the 1961-2003 and the 1993-2003 periods, and for the TAR models and the AR4 models. This could have a number of different reasons, and the discrepancy could be considered not significant given the error ranges of observations and models. It is no proof that models underestimate future sea level rise. But it is at least a plausible possibility that the models may underestimate future rise.

A third issue worth mentioning is that of carbon cycle feedback. The temperature projections provided in table SPM-3 of the Summary for Policy Makers range from 1.1 to 6.4 ºC warming and include carbon cycle feedback. The sea level range, however, is based on scenarios that exclude this feedback and thus only range up to 4.5 ºC. This could easily be misunderstood, as in table SPM-3 the temperature ranges including carbon cycle feedback are shown right next to the sea level ranges, but the latter actually apply to a smaller temperature range. As a rough estimate, I suggest that for a 6.4 ºC warming scenario, of the order of 20 cm would have to be added to the 59 cm defining the upper end of the sea level range.

A final point is the regional aspects. Planners of coastal defences need to be aware that sea level rise will not be the same everywhere. The AR4 shows a map of regional sea level changes, which shows that e.g. European coasts can expect a rise by 5-15 cm more than the global mean rise – that is a model average, not including an uncertainty range. The pattern in this map is remarkably similar to that expected from a slowdown in thermohaline circulation (see Levermann et al. 2005) so probably it is dominated by this effect. In addition, some land areas are rising and some are subsiding in response to the end of the last Ice Age or due to local anthropogenic processes (e.g. groundwater withdrawal), which local planners need to account for.

The bottom line

The main conclusion of this analysis is that sea level uncertainty is not smaller now than it was at the time of the TAR, and that quoting the 18-59 cm range of sea level rise, as many media articles have done, is not telling the full story. 59 cm is unfortunately not the “worst case”. It does not include the full ice sheet uncertainty, which could add 20 cm or even more. It does not cover the full “likely” temperature range given in the AR4 (up to 6.4 ºC) – correcting for that could again roughly add 20 cm. It does not account for the fact that past sea level rise is underestimated by the models for reasons that are unclear. Considering these issues, a sea level rise exceeding one metre can in my view by no means ruled out. In a completely different analysis, based only on a simple correlation of observed sea level rise and temperature, I came to a similar conclusion. As stated in that paper, my point here is not that I predict that sea level rise will be higher than IPCC suggests, or that the IPCC estimates for sea level are wrong in any way. My point is that in terms of a risk assessment, the uncertainty range that one needs to consider is in my view substantially larger than 18-59 cm.

A final thought: this discussion has all been about sea level rise until the year 2095. Sea level rise does not end there, as the quotes from the SPM at the beginning of this article show. Over several centuries, without serious mitigation efforts we may expect several meters of sea level rise. The Advisory Council on Global Change of the German government (disclosure: I'm a member of this body) in its recent special report on the oceans has proposed to limit long-term sea level rise to a maximum of one meter, as a guard-rail to guide climate policy. But that’s another story.
realclimate.org
climatehotmap.org